73 research outputs found

    Casimir-Polder potentials as entanglement probe

    Full text link
    We have considered the interaction of a pair of spatially separated two-level atoms with the electromagnetic field in its vacuum state and we have analyzed the amount of entanglement induced between the two atoms by the non local field fluctuations. This has allowed us to characterize the quantum nature of the non local correlations of the electromagnetic field vacuum state as well as to link the induced quantum entanglement with Casimir-Polder potentials.Comment: Published on Europhysics Letters 78 (2007) 3000

    Mechanisms of cerebellar tonsil herniation in patients with Chiari malformations as guide to clinical management

    Get PDF
    Background The pathogenesis of Chiari malformations is incompletely understood. We tested the hypothesis that different etiologies have different mechanisms of cerebellar tonsil herniation (CTH), as revealed by posterior cranial fossa (PCF) morphology. Methods In 741 patients with Chiari malformation type I (CM-I) and 11 patients with Chiari malformation type II (CM-II), the size of the occipital enchondrium and volume of the PCF (PCFV) were measured on reconstructed 2D-CT and MR images of the skull. Measurements were compared with those in 80 age- and sex-matched healthy control individuals, and the results were correlated with clinical findings. Results Significant reductions of PCF size and volume were present in 388 patients with classical CM-I, 11 patients with CM-II, and five patients with CM-I and craniosynostosis. Occipital bone size and PCFV were normal in 225 patients with CM-I and occipitoatlantoaxial joint instability, 55 patients with CM-I and tethered cord syndrome (TCS), 30 patients with CM-I and intracranial mass lesions, and 28 patients with CM-I and lumboperitoneal shunts. Ten patients had miscellaneous etiologies. The size and area of the foramen magnum were significantly smaller in patients with classical CM-I and CM-I occurring with craniosynostosis and significantly larger in patients with CM-II and CM-I occurring with TCS. Conclusions Important clues concerning the pathogenesis of CTH were provided by morphometric measurements of the PCF. When these assessments were correlated with etiological factors, the following causal mechanisms were suggested: (1) cranial constriction; (2) cranial settling; (3) spinal cord tethering; (4) intracranial hypertension; and (5) intraspinal hypotension

    Magnetic resonance imaging indicators of blood-brain barrier and brain water changes in young rats with kaolin-induced hydrocephalus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hydrocephalus is associated with enlargement of cerebral ventricles. We hypothesized that magnetic resonance (MR) imaging parameters known to be influenced by tissue water content would change in parallel with ventricle size in young rats and that changes in blood-brain barrier (BBB) permeability would be detected.</p> <p>Methods</p> <p>Hydrocephalus was induced by injection of kaolin into the cisterna magna of 4-week-old rats, which were studied 1 or 3 weeks later. MR was used to measure longitudinal and transverse relaxation times (T1 and T2) and apparent diffusion coefficients in several regions. Brain tissue water content was measured by the wet-dry weight method, and tissue density was measured in Percoll gradient columns. BBB permeability was measured by quantitative imaging of changes on T1-weighted images following injection of gadolinium diethylenetriamine penta-acetate (Gd-DTPA) tracer and microscopically by detection of fluorescent dextran conjugates.</p> <p>Results</p> <p>In nonhydrocephalic rats, water content decreased progressively from age 3 to 7 weeks. T1 and T2 and apparent diffusion coefficients did not exhibit parallel changes and there was no evidence of BBB permeability to tracers. The cerebral ventricles enlarged progressively in the weeks following kaolin injection. In hydrocephalic rats, the dorsal cortex was more dense and the white matter less so, indicating that the increased water content was largely confined to white matter. Hydrocephalus was associated with transient elevation of T1 in gray and white matter and persistent elevation of T2 in white matter. Changes in the apparent diffusion coefficients were significant only in white matter. Ventricle size correlated significantly with dorsal water content, T1, T2, and apparent diffusion coefficients. MR imaging showed evidence of Gd-DTPA leakage in periventricular tissue foci but not diffusely. These correlated with microscopic leak of larger dextran tracers.</p> <p>Conclusions</p> <p>MR characteristics cannot be used as direct surrogates for water content in the immature rat model of hydrocephalus, probably because they are also influenced by other changes in tissue composition that occur during brain maturation. There is no evidence for widespread persistent opening of BBB as a consequence of hydrocephalus in young rats. However, increase in focal BBB permeability suggests that periventricular blood vessels may be disrupted.</p

    Periventricular white-matter cysts in a murine model of gram-negative ventriculitis.

    No full text
    Hydrocephalic patients with shunt infections frequently develop multiple cerebrospinal-fluid-density cysts that cause midline shift and life-threatening intracranial hypertension and respond poorly, if at all, to shunt diversion of cerebrospinal fluid. These cysts have been considered to represent multiloculation of the ventricular system by ependymal adhesions and veils resulting from ventriculitis. Studies using an experimental model of E. coli meningitis/ventriculitis in the hy-3 mouse suggest these cysts: (1) develop by the coalescence of lakes of white-matter edema, (2) grow to large size entirely within the periventricular white matter, and (3) cause pseudoloculation of the ventricle by compression from without. The so-called intraventricular septa or "veils" are the ependyma displaced inward by subependymal cysts or sheets of residual pericystic white matter. This finding permits better interpretation of computed tomographic images depicting persistent enlargement of the so-called multiloculations despite functioning ventricular shunt catheters, the multiplicity of cysts, and the white-matter location of these cysts

    Mathematics in Education and Industry

    No full text
    • …
    corecore