13,979 research outputs found
Canonical Proof nets for Classical Logic
Proof nets provide abstract counterparts to sequent proofs modulo rule
permutations; the idea being that if two proofs have the same underlying
proof-net, they are in essence the same proof. Providing a convincing proof-net
counterpart to proofs in the classical sequent calculus is thus an important
step in understanding classical sequent calculus proofs. By convincing, we mean
that (a) there should be a canonical function from sequent proofs to proof
nets, (b) it should be possible to check the correctness of a net in polynomial
time, (c) every correct net should be obtainable from a sequent calculus proof,
and (d) there should be a cut-elimination procedure which preserves
correctness. Previous attempts to give proof-net-like objects for propositional
classical logic have failed at least one of the above conditions. In [23], the
author presented a calculus of proof nets (expansion nets) satisfying (a) and
(b); the paper defined a sequent calculus corresponding to expansion nets but
gave no explicit demonstration of (c). That sequent calculus, called LK\ast in
this paper, is a novel one-sided sequent calculus with both additively and
multiplicatively formulated disjunction rules. In this paper (a self-contained
extended version of [23]), we give a full proof of (c) for expansion nets with
respect to LK\ast, and in addition give a cut-elimination procedure internal to
expansion nets - this makes expansion nets the first notion of proof-net for
classical logic satisfying all four criteria.Comment: Accepted for publication in APAL (Special issue, Classical Logic and
Computation
The Monopoly of Global Capital Flows: Who Needs Structural Adjustment Now?, IPC Working Paper No. 12
- …