13,979 research outputs found

    How Inclusive is 'Inclusive Growth'?

    Get PDF

    Powerlessness in Behind the Beautiful Forevers

    Get PDF

    The Globalisation of Inflation and Misguided Monetary Policies

    Get PDF

    Canonical Proof nets for Classical Logic

    Full text link
    Proof nets provide abstract counterparts to sequent proofs modulo rule permutations; the idea being that if two proofs have the same underlying proof-net, they are in essence the same proof. Providing a convincing proof-net counterpart to proofs in the classical sequent calculus is thus an important step in understanding classical sequent calculus proofs. By convincing, we mean that (a) there should be a canonical function from sequent proofs to proof nets, (b) it should be possible to check the correctness of a net in polynomial time, (c) every correct net should be obtainable from a sequent calculus proof, and (d) there should be a cut-elimination procedure which preserves correctness. Previous attempts to give proof-net-like objects for propositional classical logic have failed at least one of the above conditions. In [23], the author presented a calculus of proof nets (expansion nets) satisfying (a) and (b); the paper defined a sequent calculus corresponding to expansion nets but gave no explicit demonstration of (c). That sequent calculus, called LK\ast in this paper, is a novel one-sided sequent calculus with both additively and multiplicatively formulated disjunction rules. In this paper (a self-contained extended version of [23]), we give a full proof of (c) for expansion nets with respect to LK\ast, and in addition give a cut-elimination procedure internal to expansion nets - this makes expansion nets the first notion of proof-net for classical logic satisfying all four criteria.Comment: Accepted for publication in APAL (Special issue, Classical Logic and Computation
    • …
    corecore