41 research outputs found
Lymphocytes and macrophages of the epidermis and dermis in lesional psoriatic skin, but not epidermal Langerhans cells, are depleted by treatment with cyclosporin A
Since cyclosporin A (CsA) is an immuno-suppressive agent, its beneficial effect in psoriasis suggests that immune cells may play a role in the pathogenesis and resolution of psoriasis. To determine early effects of CsA in psoriasis, we quantitated immune cells using double immunofluorescence microscopy on biopsy specimens obtained prior to therapy and after 3,7, and 14 days of CsA therapy. CsA therapy resulted in significant reductions in the absolute number of immune cells (including T cells, monocytes/macrophages, and antigen presenting cells) contained within psoriatic skin. The effect was rapid, with over one-half of the reduction in the density of HLe1 + (human leukocyte antigen-1 positive or bone marrow derived) cells, including T cells, activated T cells, monocytes, and Langerhans cells (LCs), occurring within 3 days. Despite the overall reduction in the numbers of immunocytes in the skin, the proportion of T cells, Langerhans cells, and monocytes in relation to the total number of immune cells was unchanged with therapy, reflecting equally proportional losses of each subtype. Dermal CD1 + DR + cells (putative Langerhans cells), which are not found in normal skin but are present in lesional psoriasis skin, were virtually cleared from the papillary dermis after CsA therapy. Although absolute numbers of epidermal Langerhans cells, defined as cells expressing both CD1 (T6) and DR molecules (CD1 + DR + ), were also reduced after CsA, epidermal non-Langerhans CD1 - DR + cells (macrophages, activated T cells, DR - keratinocytes) demonstrated a proportionally greater decrease, with the ratio of CD1 + DR + Langerhans cells/non-Langerhans CD1 - DR + epidermal cells changing from a mean of 0.82 at baseline to 1.92 at day 14. Thus, early in the course of therapy, CsA appears to be effective at clearing CD1 - DR + cells while leaving LC relatively intact in the epidermis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47242/1/403_2004_Article_BF00431054.pd
Pediatric drug safety signal detection: a new drug-event reference set for performance testing of data-mining methods and systems
BACKGROUND: Better evidence regarding drug safety in the pediatric population might be generated from existing data sources such as spontaneous reporting systems and electronic healthcare records. The Global Research in Paediatrics (GRiP)-Network of Excellence aims to develop pediatric-specific methods that can be applied to these data sources. A reference set of positive and negative drug-event associations is required. OBJECTIVE: The aim of this study was to develop a pediatric-specific reference set of positive and negative drug-event associations. METHODS: Considering user patterns and expert opinion, 16 drugs that are used in individuals aged 0-18 years were selected and evaluated against 16 events, regarded as important safety outcomes. A cross-table of unique drug-event pairs was created. Each pair was classified as potential positive or negative control based on information from the drug's Summary of Product Characteristics and Micromedex. If both information sources consistently listed the event as an adverse event, the combination was reviewed as potential positive control. If both did not, the combination was evaluated as potential negative control. Further evaluation was based on published literature. RESULTS: Selected drugs include ibuprofen, flucloxacillin, domperidone, methylphenidate, montelukast, quinine, and cyproterone/ethinylestradiol. Selected events include bullous eruption, aplastic anemia, ventricular arrhythmia, sudden death, acute kidney injury, psychosis, and seizure. Altogether, 256 unique combinations were reviewed, yielding 37 positive (17 with evidence from the pediatric population and 20 with evidence from adults only) and 90 negative control pairs, with the remainder being unclassifiable. CONCLUSION: We propose a drug-event reference set that can be used to compare different signal detection methods in the pediatric population
False-negative results in immunoblot assay of serum IgA antibodies reactive with the 180-kDa bullous pemphigoid antigen: the importance of primary incubation temperature
Background Different subepidermal autoimmune blistering skin disorders are characterized by linear deposition of IgA, sometimes accompanied by linear IgG, along the epidermal basement membrane zone. Identification of the targeted autoantigen is usually attempted by immunoblotting. Although immunoblotting works well for human IgG, the method is less successful for IgA and often no or only faint signals are obtained. Objectives To improve the method of immunoblotting for diagnosis of IgA-mediated bullous dermatoses. Methods Eleven sera, selected from patients with linear deposition of IgA along the epidermal basement membrane zone in vivo, were tested by immunoblotting for antigen specificity using different primary incubation temperatures. Results No reliable information regarding IgA antigen specificity was obtained when the primary incubation was undertaken at room temperature. In 10 of 11 sera, IgA bound to the 180-kDa bullous pemphigoid antigen (BP180) when the primary incubation temperature was increased to 37 T. Conclusions Primary incubation at room temperature may result in false-negative results in the IgA-BP180 immunoblot assay