11 research outputs found

    Apoptosis-Like Death in Bacteria Induced by HAMLET, a Human Milk Lipid-Protein Complex

    Get PDF
    Background: Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid. Methodology/Principal Findings: We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity) to execute cell death. Conclusions/Significance: Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells

    LuxS impacts on LytA-dependent autolysis and on competence in Streptococcus pneumoniae

    No full text
    The ubiquitous protein LuxS with S-ribosylhomocysteinase activity is involved in S-adenosyl methionine detoxification, C-1 unit recycling and the production of autoinducers that allow the cell to sense and respond to cell density. Independent reports describe the impact of LuxS deficiency on Streptococcus pneumoniae virulence in the mouse. In vitro, LuxS deficiency confers discrete phenotypes. A combined approach using genetic dissection and mixed-culture experiments allowed the involvement of LuxS in the developmental physiology of S. pneumoniae to be investigated. Functional LuxS was found to be related on the one hand to down-regulation of competence, and on the other hand to attenuation of autolysis in cultures entering stationary phase. The competence phenotype of luxS mutant bacteria was complemented by media conditioned by competence-defective ComAB0 bacteria, but not by BSA. The autolytic phenotype was complemented by BSA, but not by conditioned supernatants. It is suggested that the impact of LuxS on competence, but not on autolysis, involves cell-cell communication. The phenotype of luxS mutant strains reveals a hierarchy in the competence regulatory networks of S. pneumoniae

    Concentration of the sun's rays using catenary curves

    No full text
    corecore