57 research outputs found

    Natural anti-CCR5 antibodies in HIV-infection and -exposure

    Get PDF
    Natural antibodies constitute a first-line of defence against pathogens; they may also play other roles in immune regulation and homeostasis, through their ability to bind host antigens, surface molecules and receptors. Natural anti-CCR5 antibodies can be decisive in preventing HIV infection in mucosal tissues and offer prompt and effective protection just at major sites of virus entry. Among natural anti-CCR5 antibodies, IgG and IgA to the ECL1 domain have been shown to block HIV effectively and durably without causing harm to the host. Their biological properties and their uncommon generation in subsets of HIV-infected and HIV-exposed individuals (so called ESN) will be introduced and discussed, with the aim at exploiting their potential in therapy and prevention

    Baseline micronuclei and nuclear abnormalities frequencies in native fishes from the Paraná River (Argentina)

    No full text
    This work aims to establish baseline frequencies of micronuclei (MN) and nuclear abnormalities (NA) in native fish species collected in situ from the Paraná River. For this purpose, the micronucleus test was applied in peripheral blood erythrocytes from specimens obtained from samplings collected at two localities (Posadas and Candelaria, Misiones, Argentina) during the period 2007-2010. The results were statistically analyzed using the Kruskal Wallis test. Data from nine fish species were obtained, among which Steindachnerina brevipinna(Characiformes) revealed the highest baseline frequency of MN and NA, showing statistically significant differences with regard to the other analyzed species. These results are the first report of baseline MN and NA frequencies for native fish species studied and could be useful for future comparisons with data of fishes belonging to other environments

    Established and proposed roles of xanthine oxidoreductase in oxidative and reductive pathways in plants

    Get PDF
    Xanthine oxidoreductase (XOR) is among the most-intensively studied enzymes known to participate in the consumption of oxygen in cells. However, it attracted the attention of researchers due its participation in free radical production in vivo, mainly through the production of superoxide radicals. In plants, XOR is a key enzyme in purine degradation where it catalyzes the oxidation of hypoxanthine to xanthine and of xanthine to uric acid. Both reactions are accompanied by electron transfer to either NAD+ with simultaneous formation of NADH or to molecular oxygen, which results in formation of superoxides. Characterization of plant XOR mutants and isolated XOR proteins from various plant species provided evidence that the enzyme plays significant roles in plant growth, leaf senescence, fruit size, synthesis of nitrogen storage compounds, and plant-pathogen interactions. Moreover, the ability of XOR to carry out redox reactions as NADH oxidase and to produce reactive oxygen species and nitric oxide, together with a possible complementary role in abscisic acid synthesis have raised further attention on the importance of this enzyme. Based on these established and proposed functions, XOR is discussed as regulator of different processes of interest in plant biology and agriculture.The authors acknowledge the support of the research grants AGL2010-16167 to J.F.M. from the Spanish Ministry of Science and Innovation and Bi 1075/5-1 to F.B. by the Deutsche Forschungsgemeinschaft. R.E. received a JAE-Doctor grant from the Spanish Research Council (CSIC).
    corecore