30 research outputs found

    Corticosterone Alters AMPAR Mobility and Facilitates Bidirectional Synaptic Plasticity

    Get PDF
    Background: The stress hormone corticosterone has the ability both to enhance and suppress synaptic plasticity and learning and memory processes. However, until today there is very little known about the molecular mechanism that underlies the bidirectional effects of stress and corticosteroid hormones on synaptic efficacy and learning and memory processes. In this study we investigate the relationship between corticosterone and AMPA receptors which play a critical role in activity-dependent plasticity and hippocampal-dependent learning. Methodology/Principal Findings: Using immunocytochemistry and live cell imaging techniques we show that corticosterone selectively increases surface expression of the AMPAR subunit GluR2 in primary hippocampal cultures via a glucocorticoid receptor and protein synthesis dependent mechanism. In agreement, we report that corticosterone also dramatically increases the fraction of surface expressed GluR2 that undergo lateral diffusion. Furthermore, our data indicate that corticosterone facilitates NMDAR-invoked endocytosis of both synaptic and extra-synaptic GluR2 under conditions that weaken synaptic transmission. Conclusion/Significance: Our results reveal that corticosterone increases mobile GluR2 containing AMPARs. The enhanced lateral diffusion properties can both facilitate the recruitment of AMPARs but under appropriate conditions facilitate the loss of synaptic AMPARs (LTD). These actions may underlie both the facilitating and suppressive effects of corticosteroid hormones on synaptic plasticity and learning and memory and suggest that these hormones accentuate synaptic efficacy

    Depression, Anxiety and Glucose Metabolism in the General Dutch Population: The New Hoorn Study

    Get PDF
    BACKGROUND: There is a well recognized association between depression and diabetes. However, there is little empirical data about the prevalence of depressive symptoms and anxiety among different groups of glucose metabolism in population based samples. The aim of this study was to determine whether the prevalence of increased levels of depression and anxiety is different between patients with type 2 diabetes and subjects with impaired glucose metabolism (IGM) and normal glucose metabolism (NGM). METHODOLOGY/PRINCIPAL FINDINGS: Cross-sectional data from a population-based cohort study of 2667 residents, 1261 men and 1406 women aged 40-65 years from the Hoorn region, the Netherlands. Depressive symptoms and anxiety were measured using the Centre for Epidemiologic Studies Depression Scale (CES-D, score >or=16) and the Hospital Anxiety and Depression Scale--Anxiety Subscale (HADS-A, score >or=8), respectively. Glucose metabolism status was determined by oral glucose tolerance test. In the total study population the prevalence of depressive symptoms and anxiety for the NGM, IGM and type 2 diabetes were 12.5, 12.2 and 21.0% (P = 0.004) and 15.0, 15.3 and 19.9% (p = 0.216), respectively. In men, the prevalence of depressive symptoms was 7.7, 9.5 and 19.6% (p<0.001), and in women 16.4, 15.8 and 22.6 (p = 0.318), for participants with NGM, IGM and type 2 diabetes, respectively. Anxiety was not associated with glucose metabolism when stratified for sex. Intergroup differences (NGM vs. IGM and IGM vs. type 2 diabetes) revealed that higher prevalences of depressive symptoms are mainly manifested in participants with type 2 diabetes, and not in participants with IGM. CONCLUSIONS: Depressive symptoms, but not anxiety are associated with glucose metabolism. This association is mainly determined by a higher prevalence of depressive symptoms in participants with type 2 diabetes and not in participants with IGM

    Localization of Mineralocorticoid Receptors at Mammalian Synapses

    Get PDF
    In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids

    Accreting Millisecond X-Ray Pulsars

    Full text link
    Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer; [revision with literature updated, several typos removed, 1 new AMXP added

    Impact of voluntary exercise and housing conditions on hippocampal glucocorticoid receptor, miR-124 and anxiety

    Get PDF
    Background: Lack of physical activity and increased levels of stress contribute to the development of multiple physical and mental disorders. An increasing number of studies relate voluntary exercise with greater resilience to psychological stress, a process that is highly regulated by the hypothalamic-pituitary-adrenal (HPA) axis. However, the molecular mechanisms underlying the beneficial effects of exercise on stress resilience are still poorly understood. Here we have studied the impact of long term exercise and housing conditions on: a) hippocampal expression of glucocorticoid receptor (Nr3c1), b) epigenetic regulation of Nr3c1 (DNA methylation at the Nr3c1-1F promoter and miR-124 expression), c) anxiety (elevated plus maze, EPM), and d) adrenal gland weight and adrenocorticotropic hormone receptor (Mc2r) expression. Results: Exercise increased Nr3c1 and Nr3c1-1F expression and decreased miR-124 levels in the hippocampus in single-housed mice, suggesting enhanced resilience to stress. The opposite was found for pair-housed animals. Bisulfite sequencing showed virtually no DNA methylation in the Nr3c1-1F promoter region. Single-housing increased the time spent on stretch attend postures. Exercise decreased the time spent at the open arms of the EPM, however, the mobility of the exercise groups was significantly lower. Exercise had opposite effects on the adrenal gland weight of single and pair-housed mice, while it had no effect on adrenal Mc2r expression. Conclusions: These results suggest that exercise exerts a positive impact on stress resilience in single-housed mice that could be mediated by decreasing miR-124 and increasing Nr3c1 expression in the hippocampus. However, pair-housing reverses these effects possibly due to stress from dominance disputes between pairs

    Rotating Stars in Relativity

    Get PDF
    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information one could obtain about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.Comment: 101 pages, 18 figures. The full online-readable version of this article, including several animations, will be published in Living Reviews in Relativity at http://www.livingreviews.org

    The effect of chronic exposure to highly aggressive mice on hippocampal gene expression of non-aggressive subordinates

    No full text
    Exposure to a chronic psychosocial stressor changes the behavioral and neuroendocrine response pattern and causes structural changes in the rodent hippocampus. However, the underlying molecular mechanism of these changes induced by chronic stress is largely unknown. Recently, it was shown that exposure to a dominant highly aggressive mouse in the sensory contact model induced long-lasting stress symptoms in subordinate mice genetically selected for long attack latency (LAL mice). The aim of the present study was to study the effect of chronic stress on hippocampal gene expression in these subordinate LAL mice. GeneChips (Affymetrix) were used to compare gene expression profiles of LAL mice exposed to a sensory contact stressor for 25 days and their controls (one array per mouse, n = 5 per line). After this stress paradigm, 131 genes were found differentially expressed (P <0.01). Strikingly, all of these genes showed a subtle downregulation in response to a chronic stressor. Interestingly, a significant overrepresentation of genes encoding structural components of ribosomes were found, suggesting diminished protein biosynthesis in the hippocampus of chronically stressed LAL mice. In addition, several genes of the NF kappa B signaling cascade, a pathway crucially involved in neuronal viability and neurite growth, were found to be downregulated. Together, we hypothesize that reduced NF kappa B signaling and diminished protein biosynthesis form part of the molecular mechanisms by which a chronic psychosocial stressor induces structural alterations in hippocampus of LAL mice. (c) 2006 Elsevier B.V. All rights reserved
    corecore