6 research outputs found

    Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification

    Get PDF

    Characterization based on the 56-Kda type-specific antigen gene of Orientia tsutsugamushi genotypes isolated from Leptotrombidium mites and the rodent host post-infection.

    No full text
    Abstract. Characterization of the 56-kDa type-specific antigen (TSA) genes of Orientia tsutsugamushi (OT) from three naturally infected, laboratory-reared mite colonies comprising three species (Leptotrombidium deliense [Ld], Leptotrombidium imphalum [Li], and Leptotrombidium chiangraiensis [Lc]) has revealed the presence of single and coexisting OT genotypes found in individual chiggers. The Karp genotype was found in all of the chiggers examined, whereas Gilliam and UT302 genotypes were only observed in combination with the Karp genotype. From analysis of these OT genotypes after transmission from chiggers to mice it was determined that with the Lc and Li mites, the OT genotype composition in the rodent spleens post-infection had not changed and therefore resembled that observed in the feeding chiggers. However, only the Karp genotype was found in rodents after feeding by Ld chiggers carrying Karp and Gilliam genotypes. The current findings reveal a complex association among the host, pathogen, and vector

    Characterization based on the 56-Kda type-specific antigen gene of Orientia tsutsugamushi genotypes isolated from Leptotrombidium mites and the rodent host post-infection.

    No full text
    Abstract. Characterization of the 56-kDa type-specific antigen (TSA) genes of Orientia tsutsugamushi (OT) from three naturally infected, laboratory-reared mite colonies comprising three species (Leptotrombidium deliense [Ld], Leptotrombidium imphalum [Li], and Leptotrombidium chiangraiensis [Lc]) has revealed the presence of single and coexisting OT genotypes found in individual chiggers. The Karp genotype was found in all of the chiggers examined, whereas Gilliam and UT302 genotypes were only observed in combination with the Karp genotype. From analysis of these OT genotypes after transmission from chiggers to mice it was determined that with the Lc and Li mites, the OT genotype composition in the rodent spleens post-infection had not changed and therefore resembled that observed in the feeding chiggers. However, only the Karp genotype was found in rodents after feeding by Ld chiggers carrying Karp and Gilliam genotypes. The current findings reveal a complex association among the host, pathogen, and vector

    Speciation and ecological success in dimly lit waters: horizontal gene transfer in a green sulfur bacteria bloom unveiled by metagenomic assembly

    No full text
    11 páginas, 6 figuras.A natural planktonic bloom of a brown-pigmented photosynthetic green sulfur bacteria (GSB) from the disphotic zone of karstic Lake Banyoles (NE Spain) was studied as a natural enrichment culture from which a nearly complete genome was obtained after metagenomic assembly. We showed in situ a case where horizontal gene transfer (HGT) explained the ecological success of a natural population unveiling ecosystem-specific adaptations. The uncultured brown-pigmented GSB was 99.7% identical in the 16S rRNA gene sequence to its green-pigmented cultured counterpart Chlorobium luteolum DSM 273T. Several differences were detected for ferrous iron acquisition potential, ATP synthesis and gas vesicle formation, although the most striking trait was related to pigment biosynthesis strategy. Chl. luteolum DSM 273T synthesizes bacteriochlorophyll (BChl) c, whereas Chl. luteolum CIII incorporated by HGT a 18-kbp cluster with the genes needed for BChl e and specific carotenoids biosynthesis that provided ecophysiological advantages to successfully colonize the dimly lit waters. We also genomically characterized what we believe to be the first described GSB phage, which based on the metagenomic coverage was likely in an active state of lytic infection. Overall, we observed spread HGT and we unveiled clear evidence for virus-mediated HGT in a natural population of photosynthetic GSB.This research was funded by grant DARKNESS CGL2012- 32747 from the Spanish Office of Science (MINECO) to EOC and by the Global Ocean Sampling Project supported by the Beyster Family Foundation Fund of the San Diego Foundation and the Life Technology Foundation (to JCVI). Work on BChl e biosynthesis and the genomics of GSB in the laboratory of DAB was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DE-FG02-94ER20137.Peer reviewe
    corecore