16 research outputs found
Replacement of hematopoietic system by allogeneic stem cell transplantation in myelofibrosis patients induces rapid regression of bone marrow fibrosis
Bone marrow fibrosis is a hallmark of primary and post ET/PV myelofibrosis. To investigated the impact of replacement of the hematopoietic system in myelofibrosis patients by allogeneic stem cell transplantation on bone marrow fibrosis, we studied bone marrow fibrosis on bone marrow samples from 24 patients with myelofibrosis before and after dose-reduced conditioning followed by allogeneic stem cell transplantation from related or unrelated donor. Using the European Consensus on Grading Bone Marrow Fibrosis, before allografting all patients had advanced fibrosis MF-2 (n = 13) or MF-3 (n = 11). After transplantation, a complete (MF-0) or nearly complete (MF-1) regression of bone marrow fibrosis was seen in 59 % at day +100, in 90 % at day +180, and in 100 % at day +360. No correlation between occurrence of acute graft-versus-host disease, and fibrosis regression on day +180 was seen. We conclude that dose-reduced conditioning, followed by allogeneic stem cell transplantation, resulted in a rapid resolution of bone-marrow fibrosis suggesting the bone marrow fibrogenesis is a highly dynamic rather than static process in patients with myelofibrosis
Mathematical Modelling as a Proof of Concept for MPNs as a Human Inflammation Model for Cancer Development
<p><b>Left:</b> Typical development in stem cells (top panel A) and mature cells (bottom panel B). Healthy hematopoietic cells (full blue curves) dominate in the early phase where the number of malignant cells (stipulated red curves) are few. The total number of cells is also shown (dotted green curves). When a stem cell mutates without repairing mechanisms, a slowly increasing exponential growth starts. At a certain stage, the malignant cells become dominant, and the healthy hematopoietic cells begin to show a visible decline. Finally, the composition between the cell types results in a takeover by the malignant cells, leading to an exponential decline in hematopoietic cells and ultimately their extinction. The development is driven by an approximately exponential increase in the MPN stem cells, and the development is closely followed by the mature MPN cells. <b>Right:</b> B)The corresponding allele burden (7%, 33% and 67% corresponding to ET, PV, and PMF, respectively) defined as the ratio of MPN mature cells to the total number of mature cells.</p