723 research outputs found

    A heterotic sigma model with novel target geometry

    Full text link
    We construct a (1,2) heterotic sigma model whose target space geometry consists of a transitive Lie algebroid with complex structure on a Kaehler manifold. We show that, under certain geometrical and topological conditions, there are two distinguished topological half--twists of the heterotic sigma model leading to A and B type half--topological models. Each of these models is characterized by the usual topological BRST operator, stemming from the heterotic (0,2) supersymmetry, and a second BRST operator anticommuting with the former, originating from the (1,0) supersymmetry. These BRST operators combined in a certain way provide each half--topological model with two inequivalent BRST structures and, correspondingly, two distinct perturbative chiral algebras and chiral rings. The latter are studied in detail and characterized geometrically in terms of Lie algebroid cohomology in the quasiclassical limit.Comment: 83 pages, no figures, 2 references adde

    Unified N=2 Maxwell-Einstein and Yang-Mills-Einstein Supergravity Theories in Four Dimensions

    Full text link
    We study unified N=2 Maxwell-Einstein supergravity theories (MESGTs) and unified Yang-Mills Einstein supergravity theories (YMESGTs) in four dimensions. As their defining property, these theories admit the action of a global or local symmetry group that is (i) simple, and (ii) acts irreducibly on all the vector fields of the theory, including the ``graviphoton''. Restricting ourselves to the theories that originate from five dimensions via dimensional reduction, we find that the generic Jordan family of MESGTs with the scalar manifolds [SU(1,1)/U(1)] X [SO(2,n)/SO(2)X SO(n)] are all unified in four dimensions with the unifying global symmetry group SO(2,n). Of these theories only one can be gauged so as to obtain a unified YMESGT with the gauge group SO(2,1). Three of the four magical supergravity theories defined by simple Euclidean Jordan algebras of degree 3 are unified MESGTs in four dimensions. Two of these can furthermore be gauged so as to obtain 4D unified YMESGTs with gauge groups SO(3,2) and SO(6,2), respectively. The generic non-Jordan family and the theories whose scalar manifolds are homogeneous but not symmetric do not lead to unified MESGTs in four dimensions. The three infinite families of unified five-dimensional MESGTs defined by simple Lorentzian Jordan algebras, whose scalar manifolds are non-homogeneous, do not lead directly to unified MESGTs in four dimensions under dimensional reduction. However, since their manifolds are non-homogeneous we are not able to completely rule out the existence of symplectic sections in which these theories become unified in four dimensions.Comment: 47 pages; latex fil

    « Revêtir ma meilleure panoplie de normalité » : camouflage social chez les adultes présentant une condition du spectre autistique = "Putting on My Best Normal": Social Camouflaging in Adults with Autism Spectrum Conditions

    Get PDF
    Camouflaging of autistic characteristics in social situations is hypothesised as a common social coping strategy for adults with an autism spectrum condition (ASC). Camouflaging may impact diagnosis, quality of life, and long-term outcomes, but little is known about it. This qualitative study examined camouflaging experiences in 92 adults with ASC, with questions focusing on the nature, motivations, and consequences of camouflaging. Thematic analysis was used to identify key elements of camouflaging, which informed development of a three-stage model of the camou-flaging process. First, motivations for camouflaging included fitting in and increasing connections with others. Second, camouflaging itself comprised a combination of masking and compensation techniques. Third, short- and long-term consequences of camouflaging included exhaustion, chal-lenging stereotypes, and threats to self-perception

    The Barcode of Life Data Portal: Bridging the Biodiversity Informatics Divide for DNA Barcoding

    Get PDF
    With the volume of molecular sequence data that is systematically being generated globally, there is a need for centralized resources for data exploration and analytics. DNA Barcode initiatives are on track to generate a compendium of molecular sequence–based signatures for identifying animals and plants. To date, the range of available data exploration and analytic tools to explore these data have only been available in a boutique form—often representing a frustrating hurdle for many researchers that may not necessarily have resources to install or implement algorithms described by the analytic community. The Barcode of Life Data Portal (BDP) is a first step towards integrating the latest biodiversity informatics innovations with molecular sequence data from DNA barcoding. Through establishment of community driven standards, based on discussion with the Data Analysis Working Group (DAWG) of the Consortium for the Barcode of Life (CBOL), the BDP provides an infrastructure for incorporation of existing and next-generation DNA barcode analytic applications in an open forum

    Calcium Homeostasis in Myogenic Differentiation Factor 1 (MyoD)-Transformed, Virally-Transduced, Skin-Derived Equine Myotubes

    Get PDF
    Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with ryanodine receptor 1 (RYR1) mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance) are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1) transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells’ calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans

    Cascade testing in Familial Hypercholesterolaemia: how should family members be contacted?

    Get PDF
    Cascade testing or screening provides an important mechanism for identifying people at risk of a genetic condition. For some autosomal dominant conditions, such as Familial Hpercholesterolaemia (FH), identifying relatives allows for significant health-affecting interventions to be administered, which can extend a person’s life expectancy significantly. However, cascade screening is not without ethical implications. In this paper, we examine one ethically contentious aspect of cascade screening programmes, namely the alternative methods by which relatives of a proband can be contacted. Should the proband be responsible for contacting his or her family members, or should the screening programme contact family members directly? We argue that direct contact is an ethically justifiable method of contact tracing in cascade screening for FH. Not only has this method of contact already been utilised without adverse effects, an examination of the ethical arguments against it shows these are unsubstantiated. We describe several criteria which, if met, will allow an appropriate balance to be struck between maximising the efficiency of family tracing and respecting the interests of probands and their relatives. Keywords Cascade genetic screening; cascade testing; confidentiality; autonomy; genetics; ethics; guidelines; familial hypercholesterolaemi

    CloVR: A virtual machine for automated and portable sequence analysis from the desktop using cloud computing

    Get PDF
    Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.https://doi.org/10.1186/1471-2105-12-35

    Impact of pharmaceutical promotion on prescribing decisions of general practitioners in Eastern Turkey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Commercial sources of information are known to have greater influence than scientific sources on general practitioners' (GPs) prescribing behavior in under developed and developing countries. The study aimed to determine the self-reported impact of pharmaceutical promotion on the decision-making process of prescription of GPs in Eastern Turkey.</p> <p>Methods</p> <p>A cross-sectional, exploratory survey was performed among 152 GPs working in the primary health centers and hospitals in Erzurum province of Eastern Turkey in 2006. A self-administered structured questionnaire was used. The questionnaire included questions regarding sociodemographics, number of patients per day, time per patient, frequency of sales representative visits to GPs, participation of GPs in training courses on prescribing (in-service training, drug companies), factors affecting prescribing decision, reference sources concerning prescribing and self-reported and self-rated effect of the activities of sales representatives on GPs prescribing decisions.</p> <p>Results</p> <p>Of 152 subjects, 53.3% were male and 65.8% were working at primary health care centers, respectively. Mean patient per day was 58.3 ± 28.8 patients per GP. For majority of the GPs (73.7%), the most frequent resource used in case of any problems in prescribing process was drug guides of pharmaceutical companies. According to self-report of the GPs, their prescribing decisions were affected by participation in any training activity of drug companies, frequent visits by sales representatives, high number of patient examinations per day and low year of practice (p < 0.05 for all).</p> <p>Conclusion</p> <p>The results of this study suggest that for the majority of the GPs, primary reference sources concerning prescribing was commercial information provided by sales representatives of pharmaceutical companies, which were reported to be highly influential on their decision-making process of prescribing by GPs. Since this study was based on self-report, the influence reported by the GPs may have been underestimated.</p

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa
    corecore