21 research outputs found

    STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron

    Get PDF
    Copyright The Authors 2011. This article is published with open access at Springerlink.comNeurons in the cerebellar nuclei (CN) receive inhibitory inputs from Purkinje cells in the cerebellar cortex and provide the major output from the cerebellum, but their computational function is not well understood. It has recently been shown that the spike activity of Purkinje cells is more regular than previously assumed and that this regularity can affect motor behaviour. We use a conductance-based model of a CN neuron to study the effect of the regularity of Purkinje cell spiking on CN neuron activity. We find that increasing the irregularity of Purkinje cell activity accelerates the CN neuron spike rate and that the mechanism of this recoding of input irregularity as output spike rate depends on the number of Purkinje cells converging onto a CN neuron. For high convergence ratios, the irregularity induced spike rate acceleration depends on short-term depression (STD) at the Purkinje cell synapses. At low convergence ratios, or for synchronised Purkinje cell input, the firing rate increase is independent of STD. The transformation of input irregularity into output spike rate occurs in response to artificial input spike trains as well as to spike trains recorded from Purkinje cells in tottering mice, which show highly irregular spiking patterns. Our results suggest that STD may contribute to the accelerated CN spike rate in tottering mice and they raise the possibility that the deficits in motor control in these mutants partly result as a pathological consequence of this natural form of plasticity.Peer reviewedFinal Published versio

    Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials

    Get PDF
    OBJECTIVE: To evaluate sodium-glucose cotransporter-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists in patients with type 2 diabetes at varying cardiovascular and renal risk. DESIGN: Network meta-analysis. DATA SOURCES: Medline, Embase, and Cochrane CENTRAL up to 11 August 2020. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Randomised controlled trials comparing SGLT-2 inhibitors or GLP-1 receptor agonists with placebo, standard care, or other glucose lowering treatment in adults with type 2 diabetes with follow up of 24 weeks or longer. Studies were screened independently by two reviewers for eligibility, extracted data, and assessed risk of bias. MAIN OUTCOME MEASURES: Frequentist random effects network meta-analysis was carried out and GRADE (grading of recommendations assessment, development, and evaluation) used to assess evidence certainty. Results included estimated absolute effects of treatment per 1000 patients treated for five years for patients at very low risk (no cardiovascular risk factors), low risk (three or more cardiovascular risk factors), moderate risk (cardiovascular disease), high risk (chronic kidney disease), and very high risk (cardiovascular disease and kidney disease). A guideline panel provided oversight of the systematic review. RESULTS: 764 trials including 421 346 patients proved eligible. All results refer to the addition of SGLT-2 inhibitors and GLP-1 receptor agonists to existing diabetes treatment. Both classes of drugs lowered all cause mortality, cardiovascular mortality, non-fatal myocardial infarction, and kidney failure (high certainty evidence). Notable differences were found between the two agents: SGLT-2 inhibitors reduced admission to hospital for heart failure more than GLP-1 receptor agonists, and GLP-1 receptor agonists reduced non-fatal stroke more than SGLT-2 inhibitors (which appeared to have no effect). SGLT-2 inhibitors caused genital infection (high certainty), whereas GLP-1 receptor agonists might cause severe gastrointestinal events (low certainty). Low certainty evidence suggested that SGLT-2 inhibitors and GLP-1 receptor agonists might lower body weight. Little or no evidence was found for the effect of SGLT-2 inhibitors or GLP-1 receptor agonists on limb amputation, blindness, eye disease, neuropathic pain, or health related quality of life. The absolute benefits of these drugs vary substantially across patients from low to very high risk of cardiovascular and renal outcomes (eg, SGLT-2 inhibitors resulted in 3 to 40 fewer deaths in 1000 patients over five years; see interactive decision support tool (https://magicevidence.org/match-it/200820dist/#!/) for all outcomes. CONCLUSIONS: In patients with type 2 diabetes, SGLT-2 inhibitors and GLP-1 receptor agonists reduced cardiovascular and renal outcomes, with some differences in benefits and harms. Absolute benefits are determined by individual risk profiles of patients, with clear implications for clinical practice, as reflected in the BMJ Rapid Recommendations directly informed by this systematic review. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42019153180
    corecore