47 research outputs found

    Relationship between the actions of atrial natriuretic peptide (ANP), guanylin and uroguanylin on the isolated kidney

    No full text
    Guanylin and uroguanylin are peptides that bind to and activate guanylate cyclase C and control salt and water transport in many epithelia in vertebrates, mimicking the action of several heat-stable bacteria enterotoxins. In the kidney, both of them have well-documented natriuretic and kaliuretic effects. Since atrial natriuretic peptide (ANP) also has a natriuretic effect mediated by cGMP, experiments were designed in the isolated perfused rat kidney to identify possible synergisms between ANP, guanylin and uroguanylin. Inulin was added to the perfusate and glomerular filtration rate (GFR) was determined at 10-min intervals. Sodium was also determined. Electrolyte dynamics were measured by the clearance formula. Guanylin (0.5 µg/ml, N = 12) or uroguanylin (0.5 µg/ml, N = 9) was added to the system after 30 min of perfusion with ANP (0.1 ng/ml). The data were compared at 30-min intervals to a control (N = 12) perfused with modified Krebs-Hanseleit solution and to experiments using guanylin and uroguanylin at the same dose (0.5 µg/ml). After previous introduction of ANP in the system, guanylin promoted a reduction in fractional sodium transport (%TNa+, P<0.05) (from 78.46 ± 0.86 to 64.62 ± 1.92, 120 min). In contrast, ANP blocked uroguanylin-induced increase in urine flow (from 0.21 ± 0.01 to 0.15 ± 0.007 ml g-1 min-1, 120 min, P<0.05) and the reduction in fractional sodium transport (from 72.04 ± 0.86 to 85.19 ± 1.48, %TNa+, at 120 min of perfusion, P<0.05). Thus, the synergism between ANP + guanylin and the antagonism between ANP + uroguanylin indicate the existence of different subtypes of receptors mediating the renal actions of guanylins

    Effects of microcystin-LR in isolated perfused rat kidney.

    No full text
    Microcystin is a hepatotoxic peptide which inhibits protein phosphatase types 1 and 2A. The objective of the present study was to evaluate the physiopathologic effects of microcystin-LR in isolated perfused rat kidney. Adult Wistar rats (N = 5) of both sexes (240-280 g) were utilized. Microcystin-LR (1 microg/ml) was perfused over a period of 120 min, during which samples of urine and perfusate were collected at 10-min intervals to determine the levels of inulin, sodium, potassium and osmolality. We observed a significant increase in urinary flow with a peak effect at 90 min (control (C) = 0.20 +/- 0.01 and treated (T) = 0.32 +/- 0.01 ml g-1 min-1, P&lt;0.05). At 90 min there was a significant increase in perfusate pressure (C = 129.7 +/- 4.81 and T = 175.0 +/- 1.15 mmHg) and glomerular filtration rate (C = 0.66 +/- 0.07 and T = 1.10 +/- 0. 04 ml g-1 min-1) and there was a significant reduction in fractional sodium tubular transport at 120 min (C = 78.6 +/- 0.98 and T = 73.9 +/- 0.95%). Histopathologic analysis of the perfused kidneys showed protein material in the urinary space, suggestive of renal toxicity. These data demonstrate renal vascular, glomerular and urinary effects of microcystin-LR, indicating that microcystin acts directly on the kidney by probable inhibition of protein phosphatases

    Uroguanylin induces electroencephalographic spikes in rats

    No full text
    Uroguanylin (UGN) is an endogenous peptide that acts on membrane-bound guanylate cyclase receptors of intestinal and renal cells increasing cGMP production and regulating electrolyte and water epithelial transport. Recent research works demonstrate the expression of this peptide and its receptor in the central nervous system. The current work was undertaken in order to evaluate modifications of electroencephalographic spectra (EEG) in anesthetized Wistar rats, submitted to intracisternal infusion of uroguanylin (0.0125 nmoles/min or 0.04 nmoles/min). The current observations demonstrate that 0.0125 nmoles/min and 0.04 nmoles/min intracisternal infusion of UGN significantly enhances amplitude and frequency of sharp waves and evoked spikes (p = 0.03). No statistical significance was observed on absolute alpha and theta spectra amplitude. The present data suggest that UGN acts on bioelectrogenesis of cortical cells by inducing hypersynchronic firing of neurons. This effect is blocked by nedocromil, suggesting that UGN acts by increasing the activity of chloride channels

    Uroguanylin induces electroencephalographic spikes in rats

    No full text
    Uroguanylin (UGN) is an endogenous peptide that acts on membrane-bound guanylate cyclase receptors of intestinal and renal cells increasing cGMP production and regulating electrolyte and water epithelial transport. Recent research works demonstrate the expression of this peptide and its receptor in the central nervous system. The current work was undertaken in order to evaluate modifications of electroencephalographic spectra (EEG) in anesthetized Wistar rats, submitted to intracisternal infusion of uroguanylin (0.0125 nmoles/min or 0.04 nmoles/min). The current observations demonstrate that 0.0125 nmoles/min and 0.04 nmoles/min intracisternal infusion of UGN significantly enhances amplitude and frequency of sharp waves and evoked spikes (p = 0.03). No statistical significance was observed on absolute alpha and theta spectra amplitude. The present data suggest that UGN acts on bioelectrogenesis of cortical cells by inducing hypersynchronic firing of neurons. This effect is blocked by nedocromil, suggesting that UGN acts by increasing the activity of chloride channels
    corecore