8 research outputs found
General relativistic null-cone evolutions with a high-order scheme
We present a high-order scheme for solving the full non-linear Einstein
equations on characteristic null hypersurfaces using the framework established
by Bondi and Sachs. This formalism allows asymptotically flat spaces to be
represented on a finite, compactified grid, and is thus ideal for far-field
studies of gravitational radiation. We have designed an algorithm based on
4th-order radial integration and finite differencing, and a spectral
representation of angular components. The scheme can offer significantly more
accuracy with relatively low computational cost compared to previous methods as
a result of the higher-order discretization. Based on a newly implemented code,
we show that the new numerical scheme remains stable and is convergent at the
expected order of accuracy.Comment: 24 pages, 3 figure
Characteristic Evolution and Matching
I review the development of numerical evolution codes for general relativity
based upon the characteristic initial value problem. Progress in characteristic
evolution is traced from the early stage of 1D feasibility studies to 2D
axisymmetric codes that accurately simulate the oscillations and gravitational
collapse of relativistic stars and to current 3D codes that provide pieces of a
binary black hole spacetime. Cauchy codes have now been successful at
simulating all aspects of the binary black hole problem inside an artificially
constructed outer boundary. A prime application of characteristic evolution is
to extend such simulations to null infinity where the waveform from the binary
inspiral and merger can be unambiguously computed. This has now been
accomplished by Cauchy-characteristic extraction, where data for the
characteristic evolution is supplied by Cauchy data on an extraction worldtube
inside the artificial outer boundary. The ultimate application of
characteristic evolution is to eliminate the role of this outer boundary by
constructing a global solution via Cauchy-characteristic matching. Progress in
this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note:
updated version of arXiv:gr-qc/050809
Exploring new physics frontiers through numerical relativity
The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology