7 research outputs found

    What do the JAMA editors say when they discuss manuscripts that they are considering for publication? Developing a schema for classifying the content of editorial discussion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In an effort to identify previously unrecognized aspects of editorial decision-making, we explored the words and phrases that one group of editors used during their meetings.</p> <p>Methods</p> <p>We performed an observational study of discussions at manuscript meetings at <it>JAMA</it>, a major US general medical journal. One of us (KD) attended 12 editorial meetings in 2003 as a visitor and took notes recording phrases from discussion surrounding 102 manuscripts. In addition, editors attending the meetings completed a form for each manuscript considered, listing the reasons they were inclined to proceed to the next step in publication and reasons they were not (DR attended 4/12 meetings). We entered the spoken and written phrases into NVivo 2.0. We then developed a schema for classifying the editors' phrases, using an iterative approach.</p> <p>Results</p> <p>Our classification schema has three main themes: science, journalism, and writing. We considered 2,463 phrases, of which 87 related mainly to the manuscript topic and were not classified (total 2,376 classified). Phrases related to science predominated (1,274 or 54%). The editors, most of whom were physicians, also placed major weight on goals important to JAMA's mission (journalism goals) such as importance to medicine, strategic emphasis for the journal, interest to the readership, and results (729 or 31% of phrases). About 16% (n = 373) of the phrases used related to writing issues, such as clarity and responses to the referees' comments.</p> <p>Conclusion</p> <p>Classification of editorial discourse provides insight into editorial decision making and concepts that need exploration in future studies.</p

    DNA microarray profiling of genes differentially regulated by the histone deacetylase inhibitors vorinostat and LBH589 in colon cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the significant progress made in colon cancer chemotherapy, advanced disease remains largely incurable and novel efficacious chemotherapies are urgently needed. Histone deacetylase inhibitors (HDACi) represent a novel class of agents which have demonstrated promising preclinical activity and are undergoing clinical evaluation in colon cancer. The goal of this study was to identify genes in colon cancer cells that are differentially regulated by two clinically advanced hydroxamic acid HDACi, vorinostat and LBH589 to provide rationale for novel drug combination partners and identify a core set of HDACi-regulated genes.</p> <p>Methods</p> <p>HCT116 and HT29 colon cancer cells were treated with LBH589 or vorinostat and growth inhibition, acetylation status and apoptosis were analyzed in response to treatment using MTS, Western blotting and flow cytometric analyses. In addition, gene expression was analyzed using the Illumina Human-6 V2 BeadChip array and Ingenuity<sup>® </sup>Pathway Analysis.</p> <p>Results</p> <p>Treatment with either vorinostat or LBH589 rapidly induced histone acetylation, cell cycle arrest and inhibited the growth of both HCT116 and HT29 cells. Bioinformatic analysis of the microarray profiling revealed significant similarity in the genes altered in expression following treatment with the two HDACi tested within each cell line. However, analysis of genes that were altered in expression in the HCT116 and HT29 cells revealed cell-line-specific responses to HDACi treatment. In addition a core cassette of 11 genes modulated by both vorinostat and LBH589 were identified in both colon cancer cell lines analyzed.</p> <p>Conclusion</p> <p>This study identified HDACi-induced alterations in critical genes involved in nucleotide metabolism, angiogenesis, mitosis and cell survival which may represent potential intervention points for novel therapeutic combinations in colon cancer. This information will assist in the identification of novel pathways and targets that are modulated by HDACi, providing much-needed information on HDACi mechanism of action and providing rationale for novel drug combination partners. We identified a core signature of 11 genes which were modulated by both vorinostat and LBH589 in a similar manner in both cell lines. These core genes will assist in the development and validation of a common gene set which may represent a molecular signature of HDAC inhibition in colon cancer.</p

    A systematic review of clinical trials of pharmacological interventions for acute ischaemic stroke (1955-2008) that were completed, but not published in full

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We assessed the prevalence, and potential impact of, trials of pharmacological agents for acute stroke that were completed but not published in full. Failure to publish trial data is to be deprecated as it sets aside the altruism of participants' consent to be exposed to the risks of experimental interventions, potentially biases the assessment of the effects of therapies, and may lead to premature discontinuation of research into promising treatments.</p> <p>Methods</p> <p>We searched the Cochrane Stroke Group's Specialised Register of Trials in June 2008 for completed trials of pharmacological interventions for acute ischaemic stroke, and searched MEDLINE and EMBASE (January 2007 - March 2009) for references to recent full publications. We assessed trial completion status from trial reports, online trials registers and correspondence with experts.</p> <p>Results</p> <p>We identified 940 trials. Of these, 125 (19.6%, 95% confidence interval 16.5-22.6) were completed but not published in full by the point prevalence date. They included 16,058 participants (16 trials had over 300 participants each) and tested 89 different interventions. Twenty-two trials with a total of 4,251 participants reported the number of deaths. In these trials, 636/4251 (15.0%) died.</p> <p>Conclusions</p> <p>Our data suggest that, at the point prevalence date, a substantial body of evidence that was of relevance both to clinical practice in acute stroke and future research in the field was not published in full. Over 16,000 patients had given informed consent and were exposed to the risks of therapy. Responsibility for non-publication lies with investigators, but pharmaceutical companies, research ethics committees, journals and governments can all encourage the timely publication of trial data.</p

    Effects of experimental nitrogen fertilization on planktonic metabolism and CO<sub>2</sub> flux in a hypereutrophic hardwater lake

    Get PDF
    <div><p>Hardwater lakes are common in human-dominated regions of the world and often experience pollution due to agricultural and urban effluent inputs of inorganic and organic nitrogen (N). Although these lakes are landscape hotspots for CO<sub>2</sub> exchange and food web carbon (C) cycling, the effect of N enrichment on hardwater lake food web functioning and C cycling patterns remains unclear. Specifically, it is unknown if different eutrophication scenarios (e.g., modest non point vs. extreme point sources) yield consistent effects on auto- and heterotrophic C cycling, or how biotic responses interact with the inorganic C system to shape responses of air-water CO<sub>2</sub> exchange. To address this uncertainty, we induced large metabolic gradients in the plankton community of a hypereutrophic hardwater Canadian prairie lake by adding N as urea (the most widely applied agricultural fertilizer) at loading rates of 0, 1, 3, 8 or 18 mg N L<sup>-1</sup> week<sup>-1</sup> to 3240-L, <i>in-situ</i> mesocosms. Over three separate 21-day experiments, all treatments of N dramatically increased phytoplankton biomass and gross primary production (GPP) two- to six-fold, but the effects of N on autotrophs plateaued at ~3 mg N L<sup>-1</sup>. Conversely, heterotrophic metabolism increased linearly with N fertilization over the full treatment range. In nearly all cases, N enhanced net planktonic uptake of dissolved inorganic carbon (DIC), and increased the rate of CO<sub>2</sub> influx, while planktonic heterotrophy and CO<sub>2</sub> production only occurred in the highest N treatments late in each experiment, and even in these cases, enclosures continued to in-gas CO<sub>2</sub>. Chemical effects on CO<sub>2</sub> through calcite precipitation were also observed, but similarly did not change the direction of net CO<sub>2</sub> flux. Taken together, these results demonstrate that atmospheric exchange of CO<sub>2</sub> in eutrophic hardwater lakes remains sensitive to increasing N loading and eutrophication, and that even modest levels of N pollution are capable of enhancing autotrophy and CO<sub>2</sub> in-gassing in P-rich lake ecosystems.</p></div
    corecore