10 research outputs found

    Edge illumination and coded-aperture X-ray phase-contrast imaging: Increased sensitivity at synchrotrons and lab-based translations into medicine, biology and materials science

    Get PDF
    The edge illumination principle was first proposed at Elettra (Italy) in the late nineties, as an alternative method for achieving high phase sensitivity with a very simple and flexible set-up, and has since been under continuous development in the radiation physics group at UCL. Edge illumination allows overcoming most of the limitations of other phase-contrast techniques, enabling their translation into a laboratory environment. It is relatively insensitive to mechanical and thermal instabilities and it can be adapted to the divergent and polychromatic beams provided by X-ray tubes. This method has been demonstrated to work efficiently with source sizes up to 100m, compatible with state-of-the-art mammography sources. Two full prototypes have been built and are operational at UCL. Recent activity focused on applications such as breast and cartilage imaging, homeland security and detection of defects in composite materials. New methods such as phase retrieval, tomosynthesis and computed tomography algorithms are currently being theoretically and experimentally investigated. These results strongly indicate the technique as an extremely powerful and versatile tool for X-ray imaging in a wide range of applications

    Proof-of-concept demonstration of edge-illumination x-ray phase contrast imaging combined with tomosynthesis.

    Get PDF
    In this note we present the first proof-of-concept results on the potential effectiveness of the edge-illumination x-ray phase contrast method (in its 'coded-aperture' based lab implementation) combined with tomosynthesis. We believe that, albeit admittedly preliminary (e.g. we only present phantom work), these results deserve early publication in a note primarily for four reasons. First, we fully modelled the imaging acquisition method, and validated the simulation directly with experimental results. This shows that the implementation of the method in the new geometry is understood, and thus that it will be possible to use the model to simulate more complex scenarios in the future. Secondly, we show that a strong phase contrast signal is preserved in the reconstructed tomosynthesis slices: this was a concern, as the high spatial frequency nature of the signal makes it sensitive to any filtration-related procedure. Third, we show that, despite the non-optimized nature of the imaging prototype used, we can perform a full angular scan at acceptable dose levels and with exposure times not excessively distant from what is required by clinical practice. Finally, we discuss how the proposed phase contrast method, unlike other approaches apart from free-space propagation (which however requires a smaller focal spot, thus reducing the flux and increasing exposure times), can be easily implemented in a tomosynthesis geometry suitable for clinical use. In summary, we find that these technical results indicate a high potential for the combination of the two methods. Combining slice separation with detail enhancement provided by phase effects would substantially increase the detectability of small lesions and/or calcifications, which we aim to demonstrate in the next steps of this study

    Low-dose phase contrast mammography with conventional x-ray sources

    Get PDF
    Purpose: To provide an x-ray phase contrast imaging (XPCI) method working with conventional sources that could be readily translated into clinical practice. XPCI shows potential in synchrotron studies but attempts at translating it for use with conventional sources are subject to limitations in terms of field of view, stability, exposure time, and possibly most importantly, delivered dose. Methods: Following the adaptation of our “edge-illumination” XPCI technique for use with conventional x-ray sources through the use of x-ray masks, the authors have further modified the design of such masks to allow further reducing the dose delivered to the sample without affecting the phase sensitivity of the method. Results: The authors have built a prototype based on the new mask design and used it to image ex vivo breast tissue samples containing malignant lesions. The authors compared images acquired with this prototype to those obtained with a conventional system. The authors demonstrate and quantify image improvements, especially in terms of microcalcification detection. On calcifications detected also by the conventional system, the authors measure contrast increases from five to nine fold; calcifications and other features were also detected which are completely invisible in the conventional image. Dose measurements confirmed that the above enhancements were achieved while delivering doses compatible with clinical practice. Conclusions: The authors obtained phase-related image enhancements in mammography by means of a system built with components available off-the-shelf that operates under exposure time and dose conditions compatible with clinical practice. This opens the way to a straightforward translation of phase enhanced imaging methods into clinical practice
    corecore