15 research outputs found

    Actinopolyspora algeriensis sp. nov., a novel halophilic actinomycete isolated from a Saharan soil

    Get PDF
    A halophilic actinomycete strain designated H19T, was isolated from a Saharan soil in the Bamendil region (Ouargla province, South Algeria) and was characterized taxonomically by using a polyphasic approach. The morphological and chemotaxonomic characteristics of the strain were consistent with those of members of the genus Actinopolyspora, and 16S rRNA gene sequence analysis confirmed that strain H19T was a novel species of the genus Actinopolyspora. DNA–DNA hybridization value between strain H19T and the nearest Actinopolyspora species, A. halophila, was clearly below the 70 % threshold. The genotypic and phenotypic data showed that the organism represents a novel species of the genus Actinopolyspora for which the name Actinopolyspora algeriensis sp. nov. is proposed, with the type strain H19T (= DSM 45476T = CCUG 62415T)

    New Abundant Microbial Groups in Aquatic Hypersaline Environments

    Get PDF
    We describe the microbiota of two hypersaline saltern ponds, one of intermediate salinity (19%) and a NaCl saturated crystallizer pond (37%) using pyrosequencing. The analyses of these metagenomes (nearly 784 Mb) reaffirmed the vast dominance of Haloquadratum walsbyi but also revealed novel, abundant and previously unsuspected microbial groups. We describe for the first time, a group of low GC Actinobacteria, related to freshwater Actinobacteria, abundant in low and intermediate salinities. Metagenomic assembly revealed three new abundant microbes: a low-GC euryarchaeon with the lowest GC content described for any euryarchaeon, a high-GC euryarchaeon and a gammaproteobacterium related to Alkalilimnicola and Nitrococcus. Multiple displacement amplification and sequencing of the genome from a single archaeal cell of the new low GC euryarchaeon suggest a photoheterotrophic and polysaccharide-degrading lifestyle and its relatedness to the recently described lineage of Nanohaloarchaea. These discoveries reveal the combined power of an unbiased metagenomic and single cell genomic approach

    Metabolism of halophilic archaea

    Get PDF
    In spite of their common hypersaline environment, halophilic archaea are surprisingly different in their nutritional demands and metabolic pathways. The metabolic diversity of halophilic archaea was investigated at the genomic level through systematic metabolic reconstruction and comparative analysis of four completely sequenced species: Halobacterium salinarum, Haloarcula marismortui, Haloquadratum walsbyi, and the haloalkaliphile Natronomonas pharaonis. The comparative study reveals different sets of enzyme genes amongst halophilic archaea, e.g. in glycerol degradation, pentose metabolism, and folate synthesis. The carefully assessed metabolic data represent a reliable resource for future system biology approaches as it also links to current experimental data on (halo)archaea from the literature
    corecore