16 research outputs found

    The Interferon Response Inhibits HIV Particle Production by Induction of TRIM22

    Get PDF
    Treatment of human cells with Type 1 interferons restricts HIV replication. Here we report that the tripartite motif protein TRIM22 is a key mediator. We used transcriptional profiling to identify cellular genes that were induced by interferon treatment and identified TRIM22 as one of the most strongly up-regulated genes. We confirmed, as in previous studies, that TRIM22 over-expression inhibited HIV replication. To assess the role of TRIM22 expressed under natural inducing conditions, we compared the effects of interferon in cells depleted for TRIM22 using RNAi and found that HIV particle release was significantly increased in the knockdown, implying that TRIM22 acts as a natural antiviral effector. Further studies showed that TRIM22 inhibited budding of virus-like particles containing Gag only, indicating that Gag was the target of TRIM22. TRIM22 did not block the release of MLV or EIAV Gag particles. Inhibition was associated with diffuse cytoplasmic staining of HIV Gag rather than accumulation at the plasma membrane, suggesting TRIM22 disrupts proper trafficking. Mutational analyses of TRIM22 showed that the catalytic amino acids Cys15 and Cys18 of the RING domain are required for TRIM22 antiviral activity. These data disclose a pathway by which Type 1 interferons obstruct HIV replication

    Can Non-lytic CD8+T Cells Drive HIV-1 Escape?

    Get PDF
    The CD8+ T cell effector mechanisms that mediate control of HIV-1 and SIV infections remain poorly understood. Recent work suggests that the mechanism may be primarily non-lytic. This is in apparent conflict with the observation that SIV and HIV-1 variants that escape CD8+ T cell surveillance are frequently selected. Whilst it is clear that a variant that has escaped a lytic response can have a fitness advantage compared to the wild-type, it is less obvious that this holds in the face of non-lytic control where both wild-type and variant infected cells would be affected by soluble factors. In particular, the high motility of T cells in lymphoid tissue would be expected to rapidly destroy local effects making selection of escape variants by non-lytic responses unlikely. The observation of frequent HIV-1 and SIV escape poses a number of questions. Most importantly, is the consistent observation of viral escape proof that HIV-1- and SIV-specific CD8+ T cells lyse infected cells or can this also be the result of non-lytic control? Additionally, the rate at which a variant strain escapes a lytic CD8+ T cell response is related to the strength of the response. Is the same relationship true for a non-lytic response? Finally, the potential anti-viral control mediated by non-lytic mechanisms compared to lytic mechanisms is unknown. These questions cannot be addressed with current experimental techniques nor with the standard mathematical models. Instead we have developed a 3D cellular automaton model of HIV-1 which captures spatial and temporal dynamics. The model reproduces in vivo HIV-1 dynamics at the cellular and population level. Using this model we demonstrate that non-lytic effector mechanisms can select for escape variants but that outgrowth of the variant is slower and less frequent than from a lytic response so that non-lytic responses can potentially offer more durable control
    corecore