4,982 research outputs found

    Mean-value identities as an opportunity for Monte Carlo error reduction

    Get PDF
    In the Monte Carlo simulation of both Lattice field-theories and of models of Statistical Mechanics, identities verified by exact mean-values such as Schwinger-Dyson equations, Guerra relations, Callen identities, etc., provide well known and sensitive tests of thermalization bias as well as checks of pseudo random number generators. We point out that they can be further exploited as "control variates" to reduce statistical errors. The strategy is general, very simple, and almost costless in CPU time. The method is demonstrated in the two dimensional Ising model at criticality, where the CPU gain factor lies between 2 and 4.Comment: 10 pages, 2 tables. References updated and typos correcte

    Lattice-Spin Mechanism in Colossal Magnetoresistant Manganites

    Get PDF
    We present a single-orbital double-exchange model, coupled with cooperative phonons (the so called breathing-modes of the oxygen octahedra in manganites). The model is studied with Monte Carlo simulations. For a finite range of doping and coupling constants, a first-order Metal-Insulator phase transition is found, that coincides with the Paramagnetic-Ferromagnetic phase transition. The insulating state is due to the self-trapping of every carrier within an oxygen octahedron distortion.Comment: 4 pages, 5 figures, ReVTeX macro, accepted for publication in PR

    Optimized Monte Carlo Method for glasses

    Get PDF
    A new Monte Carlo algorithm is introduced for the simulation of supercooled liquids and glass formers, and tested in two model glasses. The algorithm is shown to thermalize well below the Mode Coupling temperature and to outperform other optimized Monte Carlo methods. Using the algorithm, we obtain finite size effects in the specific heat. This effect points to the existence of a large correlation length measurable in equal time correlation functions.Comment: Proceedings of "X International workshop on Disordered Systems" held in Molveno (Italy), March 200

    Finite size effects in the specific heat of glass-formers

    Get PDF
    We report clear finite size effects in the specific heat and in the relaxation times of a model glass former at temperatures considerably smaller than the Mode Coupling transition. A crucial ingredient to reach this result is a new Monte Carlo algorithm which allows us to reduce the relaxation time by two order of magnitudes. These effects signal the existence of a large correlation length in static quantities.Comment: Proceeding of "3rd International Workshop on Complex Systems". Sendai (Japan). To appear on AIP Conference serie

    On the critical behavior of the specific heat in glass-formers

    Get PDF
    We show numeric evidence that, at low enough temperatures, the potential energy density of a glass-forming liquid fluctuates over length scales much larger than the interaction range. We focus on the behavior of translationally invariant quantities. The growing correlation length is unveiled by studying the Finite Size effects. In the thermodynamic limit, the specific heat and the relaxation time diverge as a power law. Both features point towards the existence of a critical point in the metastable supercooled liquid phase.Comment: Version to be published in Phys. Rev.

    What is the temperature of a granular medium?

    Full text link
    In this paper we discuss whether thermodynamical concepts and in particular the notion of temperature could be relevant for the dynamics of granular systems. We briefly review how a temperature-like quantity can be defined and measured in granular media in very different regimes, namely the glassy-like, the liquid-like and the granular gas. The common denominator will be given by the Fluctuation-Dissipation Theorem, whose validity is explored by means of both numerical and experimental techniques. It turns out that, although a definition of a temperature is possible in all cases, its interpretation is far from being obvious. We discuss the possible perspectives both from the theoretical and, more importantly, from the experimental point of view

    The cumulative overlap distribution function in realistic spin glasses

    Get PDF
    We use a sample-dependent analysis, based on medians and quantiles, to analyze the behavior of the overlap probability distribution of the Sherrington-Kirkpatrick and 3D Edwards-Anderson models of Ising spin glasses. We find that this approach is an effective tool to distinguish between RSB-like and droplet-like behavior of the spin-glass phase. Our results are in agreement with a RSB-like behavior for the 3D Edwards-Anderson model.Comment: Version accepted in PRB. 12 pages, 10 figure

    A CORAVEL radial-velocity monitoring of giant Ba and S stars: spectroscopic orbits and intrinsic variations

    Full text link
    This paper provides orbital parameters for 38 barium stars and 10 extrinsic S stars derived from a decade-long CORAVEL monitoring. Lower bounds on the orbital period (generally exceeding 10 y) have been obtained for 10 more systems. Mira S, SC and (Tc-poor) C stars have also been monitored and show intrinsic radial-velocity variations due to atmospheric phenomena. Tentative orbital solutions are proposed for 3 stars (S UMa, X Cnc, BD-08:1900) where the velocity and photometric periods are different. Three stars (RZ Peg, SS Vir and R CMi) exhibit radial-velocity variations synchronous with the light variations. Pseudo-orbital solutions have been derived for those stars. In the case of RZ Peg, a line-doubling phenomenon is observed near maximum light, and probably reflects the shock wave propagating through the photosphere.Comment: Astronomy & Astrophysics Supplements, 20 pages, 8 figures, 8 tables (LaTeX). Also available at: http://obswww.unige.ch/~udry/cine/barium/barium.htm
    • …
    corecore