187 research outputs found

    Sequential nonideal measurements of quantum oscillators: Statistical characterization with and without environmental coupling

    Full text link
    A one-dimensional quantum oscillator is monitored by taking repeated position measurements. As a first con- tribution, it is shown that, under a quantum nondemolition measurement scheme applied to a system initially at the ground state, (i) the observed sequence of measurements (quantum tracks) corresponding to a single experiment converges to a limit point, and that (ii) the limit point is random over the ensemble of the experiments, being distributed as a zero-mean Gaussian random variable with a variance at most equal to the ground-state variance. As a second contribution, the richer scenario where the oscillator is coupled with a frozen (i.e., at the ground state) ensemble of independent quantum oscillators is considered. A sharply different behavior emerges: under the same measurement scheme, here we observe that the measurement sequences are essentially divergent. Such a rigorous statistical analysis of the sequential measurement process might be useful for characterizing the main quantities that are currently used for inference, manipulation, and monitoring of many quantum systems. Several interesting properties of the quantum tracks evolution, as well as of the associated (quantum) threshold crossing times, are discussed and the dependence upon the main system parameters (e.g., the choice of the measurement sampling time, the degree of interaction with the environment, the measurement device accuracy) is elucidated. At a more fundamental level, it is seen that, as an application of basic quantum mechanics principles, a sharp difference exists between the intrinsic randomness unavoidably present in any quantum system, and the extrinsic randomness arising from the environmental coupling, i.e., the randomness induced by an external source of disturbance.Comment: pages 16 Figures

    Free-Space Antenna Field/Pattern Retrieval in Reverberation Environments

    Full text link
    Simple algorithms for retrieving free-space antenna field or directivity patterns from complex (field) or real (intensity) measurements taken in ideal reverberation environments are introduced and discussed.Comment: 6 pages, 2 figures, submitted to IEEE Antennas and Wireless Propagation Letter

    DDoS Attacks with Randomized Traffic Innovation: Botnet Identification Challenges and Strategies

    Full text link
    Distributed Denial-of-Service (DDoS) attacks are usually launched through the botnetbotnet, an "army" of compromised nodes hidden in the network. Inferential tools for DDoS mitigation should accordingly enable an early and reliable discrimination of the normal users from the compromised ones. Unfortunately, the recent emergence of attacks performed at the application layer has multiplied the number of possibilities that a botnet can exploit to conceal its malicious activities. New challenges arise, which cannot be addressed by simply borrowing the tools that have been successfully applied so far to earlier DDoS paradigms. In this work, we offer basically three contributions: i)i) we introduce an abstract model for the aforementioned class of attacks, where the botnet emulates normal traffic by continually learning admissible patterns from the environment; ii)ii) we devise an inference algorithm that is shown to provide a consistent (i.e., converging to the true solution as time progresses) estimate of the botnet possibly hidden in the network; and iii)iii) we verify the validity of the proposed inferential strategy over realreal network traces.Comment: Submitted for publicatio

    Local Tomography of Large Networks under the Low-Observability Regime

    Full text link
    This article studies the problem of reconstructing the topology of a network of interacting agents via observations of the state-evolution of the agents. We focus on the large-scale network setting with the additional constraint of partialpartial observations, where only a small fraction of the agents can be feasibly observed. The goal is to infer the underlying subnetwork of interactions and we refer to this problem as locallocal tomographytomography. In order to study the large-scale setting, we adopt a proper stochastic formulation where the unobserved part of the network is modeled as an Erd\"{o}s-R\'enyi random graph, while the observable subnetwork is left arbitrary. The main result of this work is establishing that, under this setting, local tomography is actually possible with high probability, provided that certain conditions on the network model are met (such as stability and symmetry of the network combination matrix). Remarkably, such conclusion is established under the lowlow-observabilityobservability regimeregime, where the cardinality of the observable subnetwork is fixed, while the size of the overall network scales to infinity.Comment: To appear in IEEE Transactions on Information Theor

    The Embedding Capacity of Information Flows Under Renewal Traffic

    Full text link
    Given two independent point processes and a certain rule for matching points between them, what is the fraction of matched points over infinitely long streams? In many application contexts, e.g., secure networking, a meaningful matching rule is that of a maximum causal delay, and the problem is related to embedding a flow of packets in cover traffic such that no traffic analysis can detect it. We study the best undetectable embedding policy and the corresponding maximum flow rate ---that we call the embedding capacity--- under the assumption that the cover traffic can be modeled as arbitrary renewal processes. We find that computing the embedding capacity requires the inversion of very structured linear systems that, for a broad range of renewal models encountered in practice, admits a fully analytical expression in terms of the renewal function of the processes. Our main theoretical contribution is a simple closed form of such relationship. This result enables us to explore properties of the embedding capacity, obtaining closed-form solutions for selected distribution families and a suite of sufficient conditions on the capacity ordering. We evaluate our solution on real network traces, which shows a noticeable match for tight delay constraints. A gap between the predicted and the actual embedding capacities appears for looser constraints, and further investigation reveals that it is caused by inaccuracy of the renewal traffic model rather than of the solution itself.Comment: Sumbitted to IEEE Trans. on Information Theory on March 10, 201

    Diffusion-Based Adaptive Distributed Detection: Steady-State Performance in the Slow Adaptation Regime

    Full text link
    This work examines the close interplay between cooperation and adaptation for distributed detection schemes over fully decentralized networks. The combined attributes of cooperation and adaptation are necessary to enable networks of detectors to continually learn from streaming data and to continually track drifts in the state of nature when deciding in favor of one hypothesis or another. The results in the paper establish a fundamental scaling law for the steady-state probabilities of miss-detection and false-alarm in the slow adaptation regime, when the agents interact with each other according to distributed strategies that employ small constant step-sizes. The latter are critical to enable continuous adaptation and learning. The work establishes three key results. First, it is shown that the output of the collaborative process at each agent has a steady-state distribution. Second, it is shown that this distribution is asymptotically Gaussian in the slow adaptation regime of small step-sizes. And third, by carrying out a detailed large deviations analysis, closed-form expressions are derived for the decaying rates of the false-alarm and miss-detection probabilities. Interesting insights are gained. In particular, it is verified that as the step-size ÎĽ\mu decreases, the error probabilities are driven to zero exponentially fast as functions of 1/ÎĽ1/\mu, and that the error exponents increase linearly in the number of agents. It is also verified that the scaling laws governing errors of detection and errors of estimation over networks behave very differently, with the former having an exponential decay proportional to 1/ÎĽ1/\mu, while the latter scales linearly with decay proportional to ÎĽ\mu. It is shown that the cooperative strategy allows each agent to reach the same detection performance, in terms of detection error exponents, of a centralized stochastic-gradient solution.Comment: The paper will appear in IEEE Trans. Inf. Theor
    • …
    corecore