115 research outputs found
Cranial geometry in patients with dystonia and Parkinson’s disease
Abnormal skull shape has been reported in brain disorders. However, no studies have investigated cranial geometry in neurodegenerative disorders. This study aimed to evaluate the cranial geometry of patients with dystonia or Parkinson's disease (PD). Cranial computed tomography images of 36 patients each with idiopathic dystonia (IDYS), PD, and chronic subdural hematoma (CSDH) were analyzed. Those with IDYS had a significantly higher occipital index (OI) than those with CSDH (p = 0.014). When cephalic index (CI) was divided into the normal and abnormal groups, there was a significant difference between those with IDYS and CSDH (p = 0.000, α = 0.017) and between PD and CSDH (p = 0.031, α = 0.033). The age of onset was significantly correlated with the CI of IDYS (τ = − 0.282, p = 0.016). The Burke–Fahn–Marsden Dystonia Rating Scale motor score (BFMDRS-M) showed a significant correlation with OI in IDYS (τ = 0.372, p = 0.002). The cranial geometry of patients with IDYS was significantly different from that of patients with CSDH. There was a significant correlation between age of onset and CI, as well as between BFMDRS-M and OI, suggesting that short heads in the growth phase and skull balance might be related to the genesis of dystonia and its effect on motor symptoms
Factors associated with intentions to adhere to colorectal cancer screening follow-up exams
BACKGROUND: To increase adherence rate to recommendations for follow-up after abnormal colorectal cancer (CRC) screening results, factors that inhibit and facilitate follow-up must be identified. The purpose of this study was to identify the factors associated with intention to adhere to CRC screening follow-up exams. METHODS: During a 4-week period in October 2003, this survey was conducted with 426 subjects participating in a community-based CRC screening program in Nagano, Japan. Study measures included intention to adhere to recommendation for clinical follow-up in the event of an abnormal fecal occult blood test (FOBT) result, perceived susceptibility and severity of CRC, perceived benefits and barriers related to undergoing follow-up examination, social support, knowledge of CRC risk factors, health status, previous CRC screening, personality and social demographic characteristics. Univariate and multivariate logistic regression analyses on intention to adhere to recommendations for follow-up were performed. RESULTS: Among the 288 individuals analyzed, approximately 74.7% indicated that they would definitely adhere to recommendations for follow-up. After controlling for age, gender, marital status, education, economic status, trait anxiety, bowel symptoms, family history of CRC, and previous screening FOBT, analyses revealed that lower levels of perceived barriers, higher levers of perceived benefits and knowledge of CRC risk factors were significantly associated with high intention respectively. CONCLUSION: The results of this study suggest that future interventions should focus on reducing modifiable barriers by clarifying misperceptions about follow-up, promoting the acceptance of complete diagnostic evaluations, addressing psychological distress, and making follow-up testing more convenient and accessible. Moreover, educating the public regarding the risk factors of CRC and increasing understanding of the benefits of follow-up is also important
Physical Methods for Electrical Trap-and-Kill Fly Traps Using Electrified Insulated Conductors
In the present study, we analyzed negative electricity released from insects captured by an electric field (EF)-producing apparatus. Adult houseflies (Musca domestica) were used as the model insect. The EF producer consisted of a negatively charged polyvinyl chloride membrane-insulated iron plate (N-PIP) and a non-insulated grounded iron plate (GIP) paralleled with the N-PIP. An EF was formed in the space between the plates. A housefly placed on the GIP was physically attracted to the N-PIP, and electricity released from the fly was detected as a specific transient electric current at the time of attraction and during subsequent confinement of the fly to the N-PIP. The magnitude of the insect-derived electric current became larger as the voltage applied to the N-PIP increased. We determined the total amount of electric current and confinement time within the apparatus necessary to kill all captured flies. These results demonstrate the insecticidal function and insect-capturing ability of the EF-producing apparatus
Turkestan Cockroaches Avoid Entering a Static Electric Field upon Perceiving an Attractive Force Applied to Antennae Inserted into the Field
This study analysed the mechanism of avoidance behaviour by adult Turkestan cockroaches (Shelfordella lateralis Walker) in response to a static electric field (S-EF) formed in the space between a negatively charged polyvinyl chloride-insulated iron plate (N-PIP) and a grounded metal net (G-MN). The negative surface charge supplied to the iron plate by a voltage generator caused the G-MN to polarise positively via electrostatic induction. In the S-EF, the negative charge of the N-PIP created a repulsive force that pushed free electrons in the field toward the ground via the G-MN. When insects released in the space surrounded by the S-EF inserted their antennae into the S-EF, they pulled them back reflexively and moved backward. The analysis indicated that an electric current flowed transiently toward the ground when an insect inserted its antennae into the S-EF. The insect became positively charged via this discharge and was attracted to the opposite pole (N-PIP). In response to this attractive force, the insect pulled its antennae back quickly. The positive electrification caused by the removal of free electrons from the antenna tip triggered the avoidance behaviour
Developing a Phototactic Electrostatic Insect Trap Targeting Whiteflies, Leafminers, and Thrips in Greenhouses
Our aim was to develop an electrostatic apparatus to lure and capture silverleaf whiteflies (Bemisia tabaci), vegetable leafminers (Liriomyza sativae), and western flower thrips (Frankliniella occidentalis) that invade tomato greenhouses. A double-charged dipolar electric field producer (DD-EFP) was constructed by filling water in two identical transparent soft polyvinyl chloride tubes arrayed in parallel with fixed separation, and then, inserting the probes of grounded negative and positive voltage generators into the water of the two tubes to generate negatively and positively charged waters, respectively. These charged waters electrified the outer surfaces of the opposite tubes via dielectric polarization. An electric field formed between the oppositely charged tubes. To lure these phototactic insects, the water was colored yellow using watercolor paste, then introduced into the transparent insulator tubes to construct the yellow-colored DD-EFP. This apparatus lured insects in a manner similar to commercially available yellow sticky traps. The yellow-colored DD-EFP was easily placed as a movable upright screen along the plants, such that invading pests were preferentially attracted to the trap before reaching the plants. Furthermore, pests settling on the plants were attracted to the apparatus, which used a plant-tapping method to drive them off the plants. Our study provided an experimental basis for developing an electrostatic device to attract and capture insects that enter greenhouses
Efficient Use of the Green Fluorescence Protein Gene for Genetic Marking of Fusarium oxysporum f. sp. spinaciae
[Synopsis] To facilitate monitoring the infection behaviour of Fusarium oxysporum in planta, the hygromycinresistant gene and the green fluorescent protein gene were introduced into microconidia of F.oxysporum f. sp. spinaciae. The microconidia were subjected to high voltage pulse in the prescence of the plasmid for electroporation and the hygromycin-resistant transformants producing the green fluorescent protein were selected under UV irradiation. The integration of the marker genes into chromosomal DNA of these transformants was confiremed by polymerase chain reaction and Southern hybridization analysis. Transformation of phytopathogenic fungus with the green fluorescence gene enable us to easily and effectively detect the gene-marked fungi under UV-light without any additional chromogenic substrates for detecting translation product
- …