12,104 research outputs found
On the Space Time of a Galaxy
We present an exact solution of the averaged Einstein's field equations in
the presence of two real scalar fields and a component of dust with spherical
symmetry. We suggest that the space-time found provides the characteristics
required by a galactic model that could explain the supermassive central object
and the dark matter halo at once, since one of the fields constitutes a central
oscillaton surrounded by the dust and the other scalar field distributes far
from the coordinate center and can be interpreted as a halo. We show the
behavior of the rotation curves all along the background. Thus, the solution
could be a first approximation of a ``long exposition photograph'' of a galaxy.Comment: 8 pages REVTeX, 11 eps figure
Axisymmetric Stationary Solutions as Harmonic Maps
We present a method for generating exact solutions of Einstein equations in
vacuum using harmonic maps, when the spacetime possesses two commutating
Killing vectors. This method consists in writing the axisymmetric stationry
Einstein equations in vacuum as a harmonic map which belongs to the group
SL(2,R), and decomposing it in its harmonic "submaps". This method provides a
natural classification of the solutions in classes (Weil's class, Lewis' class
etc).Comment: 17 TeX pages, one table,( CINVESTAV- preprint 12/93
Solutions in Self-Dual Gravity Constructed Via Chiral Equations
The chiral model for self-dual gravity given by Husain in the context of the
chiral equations approach is discussed. A Lie algebra corresponding to a finite
dimensional subgroup of the group of symplectic diffeomorphisms is found, and
then use for expanding the Lie algebra valued connections associated with the
chiral model. The self-dual metric can be explicitly given in terms of harmonic
maps and in terms of a basis of this subalgebra.Comment: Plain Latex, 13 Pages, major revisions of style in the above proof,
several Comments added. Version to appear in Physical Review
Oscillatons revisited
In this paper, we study some interesting properties of a spherically
symmetric oscillating soliton star made of a real time-dependent scalar field
which is called an oscillaton. The known final configuration of an oscillaton
consists of a stationary stage in which the scalar field and the metric
coefficients oscillate in time if the scalar potential is quadratic. The
differential equations that arise in the simplest approximation, that of
coherent scalar oscillations, are presented for a quadratic scalar potential.
This allows us to take a closer look at the interesting properties of these
oscillating objects. The leading terms of the solutions considering a quartic
and a cosh scalar potentials are worked in the so called stationary limit
procedure. This procedure reveals the form in which oscillatons and boson stars
may be related and useful information about oscillatons is obtained from the
known results of boson stars. Oscillatons could compete with boson stars as
interesting astrophysical objects, since they would be predicted by scalar
field dark matter models.Comment: 10 pages REVTeX, 10 eps figures. Updated files to match version
published in Classical and Quantum Gravit
Quintessence and Scalar Dark Matter in the Universe
Continuing with previous works, we present a cosmological model in which dark
matter and dark energy are modeled by scalar fields and ,
respectively, endowed with the scalar potentials and . This model contains 95% of
scalar field. We obtain that the scalar dark matter mass is The solution obtained allows us to recover the success of the
standard CDM. The implications on the formation of structure are reviewed. We
obtain that the minimal cutoff radio for this model is Comment: 4 pages REVTeX, 3 eps color figures. Minor changes and references
updated. To appear in Classical and Quantum Gravity as a Letter to the
Editor. More information at http://www.fis.cinvestav.mx/~siddh/PHI
Variedades de abacaxi resistentes à fusariose.
O abacaxizeiro, conhecido botanicamente como Ananas comosus var. comosus (syns. Ananas comosus, Ananas sativus, Ananassa sativa, Brame/ia ananas, Brame/ia comosa L.), pertence à família Brame/iaceae a qual agrupa cerca de 2.000 espécies, a grande maioria delas epífitas e muitas com alto valor ornamental. Considera-se que a base do processo de seleção de A. comosus var. comosus foi o maior tamanho do fruto (frutilhos maiores e em maior número), a qualidade (baixa acidez) e poucas sementes.PDF. 52
- …
