7,525 research outputs found

    Generalized Gross--Perry--Sorkin--Like Solitons

    Get PDF
    In this paper, we present a new solution for the effective theory of Maxwell--Einstein--Dilaton, Low energy string and Kaluza--Klein theories, which contains among other solutions the well known Kaluza--Klein monopole solution of Gross--Perry--Sorkin as special case. We show also the magnetic and electric dipole solutions contained in the general one.Comment: 10 latex pages, no figures. To appear in Class. Quant. Gravity

    On the Space Time of a Galaxy

    Full text link
    We present an exact solution of the averaged Einstein's field equations in the presence of two real scalar fields and a component of dust with spherical symmetry. We suggest that the space-time found provides the characteristics required by a galactic model that could explain the supermassive central object and the dark matter halo at once, since one of the fields constitutes a central oscillaton surrounded by the dust and the other scalar field distributes far from the coordinate center and can be interpreted as a halo. We show the behavior of the rotation curves all along the background. Thus, the solution could be a first approximation of a ``long exposition photograph'' of a galaxy.Comment: 8 pages REVTeX, 11 eps figure

    Oscillatons revisited

    Get PDF
    In this paper, we study some interesting properties of a spherically symmetric oscillating soliton star made of a real time-dependent scalar field which is called an oscillaton. The known final configuration of an oscillaton consists of a stationary stage in which the scalar field and the metric coefficients oscillate in time if the scalar potential is quadratic. The differential equations that arise in the simplest approximation, that of coherent scalar oscillations, are presented for a quadratic scalar potential. This allows us to take a closer look at the interesting properties of these oscillating objects. The leading terms of the solutions considering a quartic and a cosh scalar potentials are worked in the so called stationary limit procedure. This procedure reveals the form in which oscillatons and boson stars may be related and useful information about oscillatons is obtained from the known results of boson stars. Oscillatons could compete with boson stars as interesting astrophysical objects, since they would be predicted by scalar field dark matter models.Comment: 10 pages REVTeX, 10 eps figures. Updated files to match version published in Classical and Quantum Gravit

    Quintessence and Scalar Dark Matter in the Universe

    Full text link
    Continuing with previous works, we present a cosmological model in which dark matter and dark energy are modeled by scalar fields Φ\Phi and Ψ\Psi, respectively, endowed with the scalar potentials V(Φ)=Vo[cosh(λκoΦ)1]V(\Phi)=V_{o}[ \cosh {(\lambda \sqrt{\kappa_{o}}\Phi)}-1] and V~(Ψ)=Vo~[sinh(ακoΨ)]β\tilde{V}(\Psi)=\tilde{V_{o}}[ \sinh {(\alpha \sqrt{\kappa_{o}}\Psi)}] ^{\beta}. This model contains 95% of scalar field. We obtain that the scalar dark matter mass is mΦ1026eV.m_{\Phi}\sim 10^{-26}eV. The solution obtained allows us to recover the success of the standard CDM. The implications on the formation of structure are reviewed. We obtain that the minimal cutoff radio for this model is rc1.2kpc.r_{c}\sim 1.2 kpc.Comment: 4 pages REVTeX, 3 eps color figures. Minor changes and references updated. To appear in Classical and Quantum Gravity as a Letter to the Editor. More information at http://www.fis.cinvestav.mx/~siddh/PHI

    Visual analytics of Hebrew manuscripts codicological metadata

    Get PDF
    This paper presents the CodicoDaViz research project, developed with the goal of applying data visualisation techniques to the field of codicology. Adding to the multidisciplinary nature of digital humanities (DH), this project brings together a group of experts of DH, business intelligence and computer science. Using Hebrew manuscript data as a starting point, CodicoDaViz proposes an environment for exploratory analysis to be used by Humanities experts to deepen their understanding of codicological data, and to formulate new research hypotheses. In this paper we demonstrate how data visualisation was instrumental in understanding and structuring the dataset. Examples of the dashboards that have been designed (in Tableau) to enable an interactive and ad-hoc exploration of data are also discussed.info:eu-repo/semantics/acceptedVersio

    Galactic Collapse of Scalar Field Dark Matter

    Full text link
    We present a scenario for galaxy formation based on the hypothesis of scalar field dark matter. We interpret galaxy formation through the collapse of a scalar field fluctuation. We find that a cosh potential for the self-interaction of the scalar field provides a reasonable scenario for galactic formation, which is in agreement with cosmological observations and phenomenological studies in galaxies.Comment: 4 pages, 3 figue

    Bose-Einstein condensate dark matter phase transition from finite temperature symmetry breaking of Klein-Gordon fields

    Full text link
    In this paper the thermal evolution of scalar field dark matter particles at finite cosmological temperatures is studied. Starting with a real scalar field in a thermal bath and using the one loop quantum corrections potential, we rewrite Klein-Gordon's (KG) equation in its hydrodynamical representation and study the phase transition of this scalar field due to a Z_2 symmetry breaking of its potential. A very general version of a nonlinear Schr\"odinger equation is obtained. When introducing Madelung's representation, the continuity and momentum equations for a non-ideal SFDM fluid are formulated, and the cosmological scenario with the SFDM described in analogy to an imperfect fluid is then considered where dissipative contributions are obtained in a natural way.Additional terms appear compared to those obtained in the classical version commonly used to describe the \LambdaCDM model, i.e., the ideal fluid. The equations and parameters that characterize the physical properties of the system such as its energy, momentum and viscous flow are related to the temperature of the system, scale factor, Hubble's expansion parameter and the matter energy density. Finally, some details on how galaxy halos and smaller structures might be able to form by condensation of this SF are given.Comment: Substantial changes have been made to the paper, following the referees recommendations. 16 pages. Published in Classical and Quantum Gravit
    corecore