92 research outputs found

    Relativistic Models for Binary Neutron Stars with Arbitrary Spins

    Full text link
    We introduce a new numerical scheme for solving the initial value problem for quasiequilibrium binary neutron stars allowing for arbitrary spins. The coupled Einstein field equations and equations of relativistic hydrodynamics are solved in the Wilson-Mathews conformal thin sandwich formalism. We construct sequences of circular-orbit binaries of varying separation, keeping the rest mass and circulation constant along each sequence. Solutions are presented for configurations obeying an n=1 polytropic equation of state and spinning parallel and antiparallel to the orbital angular momentum. We treat stars with moderate compaction ((m/R) = 0.14) and high compaction ((m/R) = 0.19). For all but the highest circulation sequences, the spins of the neutron stars increase as the binary separation decreases. Our zero-circulation cases approximate irrotational sequences, for which the spin angular frequencies of the stars increases by 13% (11%) of the orbital frequency for (m/R) = 0.14 ((m/R) = 0.19) by the time the innermost circular orbit is reached. In addition to leaving an imprint on the inspiral gravitational waveform, this spin effect is measurable in the electromagnetic signal if one of the stars is a pulsar visible from Earth.Comment: 21 pages, 14 figures. A few explanatory sentences added and some typos corrected. Accepted for publication in Phys. Rev.

    Towards a Realistic Neutron Star Binary Inspiral: Initial Data and Multiple Orbit Evolution in Full General Relativity

    Full text link
    This paper reports on our effort in modeling realistic astrophysical neutron star binaries in general relativity. We analyze under what conditions the conformally flat quasiequilibrium (CFQE) approach can generate ``astrophysically relevant'' initial data, by developing an analysis that determines the violation of the CFQE approximation in the evolution of the binary described by the full Einstein theory. We show that the CFQE assumptions significantly violate the Einstein field equations for corotating neutron stars at orbital separations nearly double that of the innermost stable circular orbit (ISCO) separation, thus calling into question the astrophysical relevance of the ISCO determined in the CFQE approach. With the need to start numerical simulations at large orbital separation in mind, we push for stable and long term integrations of the full Einstein equations for the binary neutron star system. We demonstrate the stability of our numerical treatment and analyze the stringent requirements on resolution and size of the computational domain for an accurate simulation of the system.Comment: 22 pages, 18 figures, accepted to Phys. Rev.

    The yields of r-process elements and chemical evolution of the Galaxy

    Get PDF
    The supernova yields of r-process elements are obtained as a function of the mass of their progenitor stars from the abundance patterns of extremely metal-poor stars on the left-side [Ba/Mg]-[Mg/H] boundary with a procedure proposed by Tsujimoto and Shigeyama. The ejected masses of r-process elements associated with stars of progenitor mass Mms18MM_{ms}\leq18M_{\odot} are infertile sources and the SNe II with 20MMms40MM_{\odot}\leq M_{ms}\leq 40M_{\odot}are the dominant source of r-process nucleosynthesis in the Galaxy. The ratio of these stars 20MMms40MM_{\odot}\leq M_{ms}\leq40M_{\odot} with compared to the all massive stars is about \sim18%. In this paper, we present a simple model that describes a star's [r/Fe] in terms of the nucleosynthesis yields of r-process elements and the number of SN II explosions. Combined the r-process yields obtained by our procedure with the scatter model of the Galactic halo, the observed abundance patterns of the metal-poor stars can be well reproducedComment: 7 pages, 6 figures, Accepted for publication in Astrophysics and Space Scienc

    The Physics of Star Cluster Formation and Evolution

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe

    Simvastatin treatment reduces the cholesterol content of membrane/lipid rafts, implicating the N -methyl-D-aspartate receptor in anxiety: a literature review

    Full text link
    corecore