741 research outputs found

    On time-varying collaboration networks

    Full text link
    The patterns of scientific collaboration have been frequently investigated in terms of complex networks without reference to time evolution. In the present work, we derive collaborative networks (from the arXiv repository) parameterized along time. By defining the concept of affine group, we identify several interesting trends in scientific collaboration, including the fact that the average size of the affine groups grows exponentially, while the number of authors increases as a power law. We were therefore able to identify, through extrapolation, the possible date when a single affine group is expected to emerge. Characteristic collaboration patterns were identified for each researcher, and their analysis revealed that larger affine groups tend to be less stable

    Asymmetric exclusion model with several kinds of impurities

    Full text link
    We formulate a new integrable asymmetric exclusion process with N−1=0,1,2,...N-1=0,1,2,... kinds of impurities and with hierarchically ordered dynamics. The model we proposed displays the full spectrum of the simple asymmetric exclusion model plus new levels. The first excited state belongs to these new levels and displays unusual scaling exponents. We conjecture that, while the simple asymmetric exclusion process without impurities belongs to the KPZ universality class with dynamical exponent 3/2, our model has a scaling exponent 3/2+N−13/2+N-1. In order to check the conjecture, we solve numerically the Bethe equation with N=3 and N=4 for the totally asymmetric diffusion and found the dynamical exponents 7/2 and 9/2 in these cases.Comment: to appear in JSTA

    Exactly solvable interacting vertex models

    Full text link
    We introduce and solvev a special family of integrable interacting vertex models that generalizes the well known six-vertex model. In addition to the usual nearest-neighbor interactions among the vertices, there exist extra hard-core interactions among pair of vertices at larger distances.The associated row-to-row transfer matrices are diagonalized by using the recently introduced matrix product {\it ansatz}. Similarly as the relation of the six-vertex model with the XXZ quantum chain, the row-to-row transfer matrices of these new models are also the generating functions of an infinite set of commuting conserved charges. Among these charges we identify the integrable generalization of the XXZ chain that contains hard-core exclusion interactions among the spins. These quantum chains already appeared in the literature. The present paper explains their integrability.Comment: 20 pages, 3 figure
    • 

    corecore