10 research outputs found

    The case for strategic international alliances to harness nutritional genomics for public and personal health

    Get PDF
    Nutrigenomics is the study of how constituents of the diet interact with genes, and their products, to alter phenotype and, conversely, how genes and their products metabolise these constituents into nutrients, antinutrients, and bioactive compounds. Results from molecular and genetic epidemiological studies indicate that dietary unbalance can alter gene-nutrient interactions in ways that increase the risk of developing chronic disease. The interplay of human genetic variation and environmental factors will make identifying causative genes and nutrients a formidable, but not intractable, challenge. We provide specific recommendations for how to best meet this challenge and discuss the need for new methodologies and the use of comprehensive analyses of nutrient-genotype interactions involving large and diverse populations. The objective of the present paper is to stimulate discourse and collaboration among nutrigenomic researchers and stakeholders, a process that will lead to an increase in global health and wellness by reducing health disparities in developed and developing countrie

    Proposed guidelines to evaluate scientific validity and evidence for genotype-based dietary advice

    No full text
    Nutrigenetic research examines the effects of inter-individual differences in genotype on responses to nutrients and other food components, in the context of health and of nutrient requirements. A practical application of nutrigenetics is the use of personal genetic information to guide recommendations for dietary choices that are more efficacious at the individual or genetic subgroup level relative to generic dietary advice. Nutrigenetics is unregulated, with no defined standards, beyond some commercially adopted codes of practice. Only a few official nutrition-related professional bodies have embraced the subject, and, consequently, there is a lack of educational resources or guidance for implementation of the outcomes of nutrigenetic research. To avoid misuse and to protect the public, personalised nutrigenetic advice and information should be based on clear evidence of validity grounded in a careful and defensible interpretation of outcomes from nutrigenetic research studies. Evidence requirements are clearly stated and assessed within the context of state-of-the-art 'evidence-based nutrition'. We have developed and present here a draft framework that can be used to assess the strength of the evidence for scientific validity of nutrigenetic knowledge and whether 'actionable'. In addition, we propose that this framework be used as the basis for developing transparent and scientifically sound advice to the public based on nutrigenetic tests. We feel that although this area is still in its infancy, minimal guidelines are required. Though these guidelines are based on semi-quantitative data, they should stimulate debate on their utility. This framework will be revised biennially, as knowledge on the subject increases. © 2017 The Author(s)

    Reconstructing Hominin Interactions with Mammalian Carnivores (6.0–1.8 Ma)

    No full text

    The contemporary demography of indigenous Australians

    No full text

    A Mitochondrial Approach to Cardiovascular Risk and Disease

    No full text
    corecore