1,995 research outputs found

    A comprehensive classification of galaxies in the SDSS: How to tell true from fake AGN?

    Full text link
    We use the W_Ha versus [NII]/Ha (WHAN) diagram to provide a comprehensive emission-line classification of SDSS galaxies. This classification is able to cope with the large population of weak line galaxies that do not appear in traditional diagrams due to a lack of some of the diagnostic lines. A further advantage of the WHAN diagram is to allow the differentiation between two very distinct classes that overlap in the LINER region of traditional diagnostic diagrams. These are galaxies hosting a weakly active nucleus (wAGN) and "retired galaxies" (RGs), i.e. galaxies that have stopped forming stars and are ionized by their hot evolved low-mass stars. A useful criterion to distinguish true from fake AGN (i.e. the RGs) is the ratio (\xi) of the extinction-corrected L_Ha with respect to the Ha luminosity expected from photoionization by stellar populations older than 100 Myr. This ratio follows a markedly bimodal distribution, with a \xi >> 1 population composed by systems undergoing star-formation and/or nuclear activity, and a peak at \xi ~ 1 corresponding to the prediction of the RG model. We base our classification scheme on the equivalent width of Ha, an excellent observational proxy for \xi. Based on the bimodal distribution of W_Ha, we set the division between wAGN and RGs at W_Ha = 3 A. Five classes of galaxies are identified within the WHAN diagram: (a) Pure star forming galaxies: log [NII]/Ha 3 A. (b) Strong AGN (i.e., Seyferts): log [NII]/Ha > -0.4 and W_Ha > 6 A. (c) Weak AGN: log [NII]/Ha > -0.4 and W_Ha between 3 and 6 A. (d) RGs: W_Ha < 3 A. (e) Passive galaxies (actually, line-less galaxies): W_Ha and W_[NII] < 0.5 A. A comparative analysis of star formation histories and of other properties in these different classes of galaxies corroborates our proposed differentiation between RGs and weak AGN in the LINER-like family. (Abridged)Comment: Accepted for publication in MNRA

    The many faces of LINER-like galaxies: a WISE view

    Full text link
    We use the SDSS and WISE surveys to investigate the real nature of galaxies defined as LINERs in the BPT diagram. After establishing a mid-infrared colour W2-W3 = 2.5 as the optimal separator between galaxies with and without star formation, we investigate the loci of different galaxy classes in the W_{Ha} versus W2-W3 space. We find that: (1) A large fraction of LINER-like galaxies are emission-line retired galaxies, i.e galaxies which have stopped forming stars and are powered by hot low-mass evolved stars (HOLMES). Their W2-W3 colours show no sign of star formation and their Ha equivalent widths, W_{Ha}, are consistent with ionization by their old stellar populations. (2) Another important fraction have W2-W3 indicative of star formation. This includes objects located in the supposedly `pure AGN' zone of the BPT diagram. (3) A smaller fraction of LINER-like galaxies have no trace of star formation from W2-W3 and a high W_{Ha}, pointing to the presence of an AGN. (4) Finally, a few LINERs tagged as retired by their W_{Ha} but with W2-W3 values indicative of star formation are late-type galaxies whose SDSS spectra cover only the old `retired' bulge. This reinforces the view that LINER-like galaxies are a mixed bag of objects involving different physical phenomena and observational effects thrusted into the same locus of the BPT diagram.Comment: Accepted for publication in MNRAS; 9 pages, 6 figure

    Semi-empirical analysis of Sloan Digital Sky Survey galaxies III. How to distinguish AGN hosts

    Get PDF
    We consider the techniques to distinguish normal star forming (NSF) galaxies and active galactic nuclei (AGN) hosts using optical spectra. The observational data base is a set of 20000 galaxies extracted from the Sloan Digital Sky Survey, for which we have determined the emission line intensities after subtracting the stellar continuum obtained from spectral synthesis. Our analysis is based on photoionization models computed using the stellar ionizing radiation predicted by Starburst 99 and, for the AGNs, a broken power-law spectrum. We explain why, among the four classical emission line diagnostic diagrams, the [OIII]/Hb vs [NII]/Ha one works best. We show however, that none of these diagrams is efficient in detecting AGNs in metal poor galaxies, should such cases exist. We propose a new divisory line between ``pure'' NSF galaxies and AGN hosts. We also show that a classification into NSF and AGN galaxies using only [NII]/Ha is feasible and useful. Finally, we propose a new classification diagram, the DEW diagram, plotting D_n(4000) vs max(EW[OII],EW[NeIII]). This diagram can be used with optical spectra for galaxies with redshifts up to z = 1.3, meaning an important progress over classifications proposed up to now. Since the DEW diagram requires only a small range in wavelength, it can also be used at even larger redshifts in suitable atmospheric windows. It also has the advantage of not requiring stellar synthesis analysis to subtract the stars and of allowing one to see ALL the galaxies in the same diagram, including passive galaxies.Comment: 14 pages, 9 figures, accepted for publication in MNRAS (replaced on august 3, 2006, eqs 6 and 7 corrected

    Flat Dielectric Grating Reflectors with High Focusing Power

    Full text link
    Sub-wavelength dielectric gratings (SWG) have emerged recently as a promising alternative to distributed-Bragg-reflection (DBR) dielectric stacks for broadband, high-reflectivity filtering applications. A SWG structure composed of a single dielectric layer with the appropriate patterning can sometimes perform as well as thirty or forty dielectric DBR layers, while providing new functionalities such as polarization control and near-field amplification. In this paper, we introduce a remarkable property of grating mirrors that cannot be realized by their DBR counterpart: we show that a non-periodic patterning of the grating surface can give full control over the phase front of reflected light while maintaining a high reflectivity. This new feature of dielectric gratings could have a substantial impact on a number of applications that depend on low-cost, compact optical components, from laser cavities to CD/DVD read/write heads.Comment: submitted to Nature Photonic
    • …
    corecore