224 research outputs found

    Intracellular oxygen tension limits muscle contraction-induced change in muscle oxygen consumption under hypoxic conditions during Hb-free perfusion.

    Get PDF
    Under acute hypoxic conditions, the muscle oxygen uptake (mVห™O2) during exercise is reduced by the restriction in oxygen-supplied volume to the mitochondria within the peripheral tissue. This suggests the existence of a factor restricting the mVห™O2 under hypoxic conditions at the peripheral tissue level. Therefore, this study set out to test the hypothesis that the restriction in mVห™O2 is regulated by the net decrease in intracellular oxygen tension equilibrated with myoglobin oxygen saturation (โˆ†PmbO2) during muscle contraction under hypoxic conditions. The hindlimb of male Wistar rats (8ย weeks old, nย =ย 5) was perfused with hemoglobin-free Krebs-Henseleit buffer equilibrated with three different fractions of O2 gas: 95.0%O2, 71.3%O2, and 47.5%O2 The deoxygenated myoglobin (Mb) kinetics during muscle contraction were measured under each oxygen condition with a near-infrared spectroscopy. The โˆ†[deoxy-Mb] kinetics were converted to oxygen saturation of myoglobin (SmbO2), and the PmbO2 was then calculated based on the SmbO2 and the O2 dissociation curve of the Mb. The SmbO2 and PmbO2 at rest decreased with the decrease in O2 supply, and the muscle contraction caused a further decrease in SmbO2 and PmbO2 under all O2 conditions. The net increase in mVห™O2 from the muscle contraction (โˆ†mVห™O2) gradually decreased as the โˆ†PmbO2 decreased during muscle contraction. The results of this study suggest that ฮ”PmbO2 is a key determinant of the ฮ”mVห™O2

    Cyp3a5 genotype as a potential pharmacodynamic biomarker for tacrolimus therapy in ulcerative colitis in japanese patients

    Get PDF
    Tacrolimus has been used to induce remission in patients with steroid-refractory ulcerative colitis. It poses a problem of large individual differences in dosage necessary to attain target blood concentration and, often, this leads to drug inefficacy. We examined the difference in mRNA expression levels of ATP binding cassette transporter B1 (ABCB1) between inflamed and non-inflamed tissues, and the influence of CYP3A5 genotype on tacrolimus therapy. The mRNA expression of CYP3A4 in colonic mucosa and that of cytochrome p450 3A5 (CYP3A5) and ABCB1 in inflamed and non-inflamed areas were examined in 14 subjects. The mRNA expression levels of CYP3A5 were higher than that of CYP3A4. The mRNA expression of ABCB1 was lower in the inflamed than in the non-inflamed mucosa, despite that of CYP3A5 mRNA level being not significantly changed. Hence, the deterioration of the disease is related to the reduction of the barrier in the inflamed mucosa. The relationship between CYP3A5 genotype and blood concentration, dose, and concentration/dose (C/D) ratio of tacrolimus in 15 subjects was studied. The tacrolimus dose to maintain equivalent blood concentrations was lower in CYP3A5*3/*3 than in CYP3A5*1 carriers, and the C/D ratio was significantly higher in the latter. Thus, CYP3A5 polymorphism information played a role in determining the initial dose of tacrolimus. Furthermore, since the effect of tacrolimus appears earlier in CYP3A5*3/*3 than in CYP3A5*1/*1 and *1/*3, it seems necessary to change the evaluation time of therapeutic effect by CYP3A5 genotype. Additionally, the relationship between CYP3A5 genotype and C/D ratio of tacrolimus in colonic mucosa was investigated in 10 subjects. Tacrolimus concentration in the mucosa was two-fold higher in CYP3A5*3/*3 than in CYP3A5*1 carriers, although no significant difference in tacrolimus-blood levels was observed. Therefore, the local concentration of tacrolimus affected by CYP3A5 polymorphism might be related to its therapeutic effect

    Endurance training facilitates myoglobin desaturation during muscle contraction in rat skeletal muscle.

    Get PDF
    At onset of muscle contraction, myoglobin (Mb) immediately releases its bound O2 to the mitochondria. Accordingly, intracellular O2 tension (PmbO2) markedly declines in order to increase muscle O2 uptake (mVO2). However, whether the change in PmbO2 during muscle contraction modulates mVO2 and whether the O2 release rate from Mb increases in endurance-trained muscles remain unclear. The purpose of this study was, therefore, to determine the effect of endurance training on O2 saturation of Mb (SmbO2) and PmbO2 kinetics during muscle contraction. Male Wistar rats were subjected to a 4-week swimming training (Tr group; 6 days per week, 30 min ร— 4 sets per day) with a weight load of 2% body mass. After the training period, deoxygenated Mb kinetics during muscle contraction were measured using near-infrared spectroscopy under hemoglobin-free medium perfusion. In the Tr group, the VmO2peak significantly increased by 32%. Although the PmbO2 during muscle contraction did not affect the increased mVO2 in endurance-trained muscle, the O2 release rate from Mb increased because of the increased Mb concentration and faster decremental rate in SmbO2 at the maximal twitch tension. These results suggest that the Mb dynamics during muscle contraction are contributing factors to faster VO2 kinetics in endurance-trained muscle

    Neoirietriol

    Get PDF
    The title compound {systematic name: (1R,4S,4aS,7R,8aR)-4-bromo-7-[(1S,3R)-3-bromo-1,2,2-trimethylยญcycloยญpentยญyl]-1,4a-dimethylยญdecaยญhydroยญnaphthalene-1,7,8a-triol}, C20H34Br2O3, is a neoirieane-type bromoยญditerpenoid isolated from Laurencia yonaguniensis Masuda et Abe, species inedita. The absolute stereochemistry was established as (1S,4R,5R,7R,10S,11S,14R). The structure displays inter- and intraยญmolecular Oโ€”Hโ‹ฏO hydrogen bonding
    • โ€ฆ
    corecore