2,719 research outputs found

    Development of large radii half-wave plates for CMB satellite missions

    Full text link
    The successful European Space Agency (ESA) Planck mission has mapped the Cosmic Microwave Background (CMB) temperature anisotropy with unprecedented accuracy. However, Planck was not designed to detect the polarised components of the CMB with comparable precision. The BICEP2 collaboration has recently reported the first detection of the B-mode polarisation. ESA is funding the development of critical enabling technologies associated with B-mode polarisation detection, one of these being large diameter half-wave plates. We compare different polarisation modulators and discuss their respective trade-offs in terms of manufacturing, RF performance and thermo-mechanical properties. We then select the most appropriate solution for future satellite missions, optimized for the detection of B-modes.Comment: 16 page

    Shock Profiles for the Asymmetric Simple Exclusion Process in One Dimension

    Full text link
    The asymmetric simple exclusion process (ASEP) on a one-dimensional lattice is a system of particles which jump at rates pp and 1p1-p (here p>1/2p>1/2) to adjacent empty sites on their right and left respectively. The system is described on suitable macroscopic spatial and temporal scales by the inviscid Burgers' equation; the latter has shock solutions with a discontinuous jump from left density ρ\rho_- to right density ρ+\rho_+, ρ<ρ+\rho_-<\rho_+, which travel with velocity (2p1)(1ρ+ρ)(2p-1)(1-\rho_+-\rho_-). In the microscopic system we may track the shock position by introducing a second class particle, which is attracted to and travels with the shock. In this paper we obtain the time invariant measure for this shock solution in the ASEP, as seen from such a particle. The mean density at lattice site nn, measured from this particle, approaches ρ±\rho_{\pm} at an exponential rate as n±n\to\pm\infty, with a characteristic length which becomes independent of pp when p/(1p)>ρ+(1ρ)/ρ(1ρ+)p/(1-p)>\sqrt{\rho_+(1-\rho_-)/\rho_-(1-\rho_+)}. For a special value of the asymmetry, given by p/(1p)=ρ+(1ρ)/ρ(1ρ+)p/(1-p)=\rho_+(1-\rho_-)/\rho_-(1-\rho_+), the measure is Bernoulli, with density ρ\rho_- on the left and ρ+\rho_+ on the right. In the weakly asymmetric limit, 2p102p-1\to0, the microscopic width of the shock diverges as (2p1)1(2p-1)^{-1}. The stationary measure is then essentially a superposition of Bernoulli measures, corresponding to a convolution of a density profile described by the viscous Burgers equation with a well-defined distribution for the location of the second class particle.Comment: 34 pages, LaTeX, 2 figures are included in the LaTeX file. Email: [email protected], [email protected], [email protected]

    Detailed study of the microwave emission of the supernova remnant 3C 396

    Get PDF
    We have observed the supernova remnant 3C~396 in the microwave region using the Parkes 64-m telescope. Observations have been made at 8.4 GHz, 13.5 GHz, and 18.6 GHz and in polarisation at 21.5 GHz. We have used data from several other observatories, including previously unpublished observations performed by the Green Bank Telescope at 31.2 GHz, to investigate the nature of the microwave emission of 3C 396. Results show a spectral energy distribution dominated by a single component power law emission with α=(0.364±0.017)\alpha=(-0.364 \pm 0.017). Data do not favour the presence of anomalous microwave emission coming from the source. Polarised emission at 21.5 GHz is consistent with synchrotron-dominated emission. We present microwave maps and correlate them with infrared (IR) maps in order to characterise the interplay between thermal dust and microwave emission. IR vs. microwave TT plots reveal poor correlation between mid-infrared and microwave emission from the core of the source. On the other hand, a correlation is detected in the tail emission of the outer shell of 3C 396, which could be ascribed to Galactic contamination.Comment: published in MNRA

    Molecular docking simulations on histone deacetylases (Hdac)-1 and-2 to investigate the flavone binding

    Get PDF
    Histone modifications through acetylation are fundamental for remodelling chromatin and consequently activating gene expression. The imbalance between acetylation and deacetylation activity causes transcriptional dysregulation associated with several disorders. Flavones, small molecules of plant origin, are known to interfere with class I histone deacetylase (HDAC) enzymes and to enhance acetylation, restoring cell homeostasis. To investigate the possible physical interactions of flavones on human HDAC1 and 2, we carried out in silico molecular docking simulations. Our data have revealed how flavone, and other two flavones previously investigated, i.e., apigenin and luteolin, can interact as ligands with HDAC1 and 2 at the active site binding pocket. Regulation of HDAC activity by dietary flavones could have important implications in developing epigenetic therapy to regulate the cell gene expression

    Primate energy input and the evolutionary transition to energy-dense diets in humans

    Get PDF
    Humans and other large-brained hominins have been proposed to increase energy turnover during their evolutionary history. Such increased energy turnover is plausible, given the evolution of energy-rich diets, but requires empirical confirmation. Framing human energetics in a phylogenetic context, our meta-analysis of 17 wild non-human primate species shows that daily metabolizable energy input follows an allometric relationship with body mass where the allometric exponent for mass is 0.75 ± 0.04, close to that reported for daily energy expenditure measured with doubly labelled water in primates. Human populations at subsistence level (n = 6) largely fall within the variation of primate species in the scaling of energy intake and therefore do not consume significantly more energy than predicted for a non-human primate of equivalent mass. By contrast, humans ingest a conspicuously lower mass of food (−64 ± 6%) compared with primates and maintain their energy intake relatively more constantly across the year. We conclude that our hominin hunter–gatherer ancestors did not increase their energy turnover beyond the allometric relationship characterizing all primate species. The reduction in digestive costs due to consumption of a lower mass of high-quality food, as well as stabilization of energy supply, may have been important evolutionary steps enabling encephalization in the absence of significantly raised energy intakes

    Interstellar dust in the BOOMERanG maps

    Get PDF
    Interstellar dust (ISD) emission is present in the mm-wave maps obtained by the BOOMERanG experiment at intermediate and high Galactic latitudes. We find that, while being sub-dominant at the lower frequencies (90,150, 240 GHz), thermal emission from ISD is dominant at 410 GHz, and is well correlated with the IRAS map at 100 µm. We find also that the angular power spectrum of ISD fluctuations at 410 GHz is a power law, and its level is negligible with respect to the angular power spectrum of the Cosmic Microwave Background (CMB) at 90 and 150 GHz

    Foregrounds in the BOOMERANG-LDB data: a preliminary rms analysis

    Get PDF
    We present a preliminary analysis of the BOOMERanG LDB maps, focused on foregrounds. BOOMERanG detects dust emission at moderately low galactic latitudes (b>20ob > -20^o) in bands centered at 90, 150, 240, 410 GHz. At higher Galactic latitudes, we use the BOOMERanG data to set conservative upper limits on the level of contamination at 90 and 150 GHz. We find that the mean square signal correlated with the IRAS/DIRBE dust template is less than 3% of the mean square signal due to CMB anisotropy

    WMAP confirming the ellipticity in BOOMERanG and COBE CMB maps

    Full text link
    The recent study of BOOMERanG 150 GHz Cosmic Microwave Background (CMB) radiation maps have detected ellipticity of the temperature anisotropy spots independent on the temperature threshold. The effect has been found for spots up to several degrees in size, where the biases of the ellipticity estimator and of the noise are small. To check the effect, now we have studied, with the same algorithm and in the same sky region, the WMAP maps. We find ellipticity of the same average value also in WMAP maps, despite of the different sensitivity of the two experiments to low multipoles. Large spot elongations had been detected also for the COBE-DMR maps. If this effect is due to geodesic mixing and hence due to non precisely zero curvature of the hyperbolic Universe, it can be linked to the origin of WMAP low multipoles anomaly.Comment: More explanations and two references adde

    Is there a common origin for the WMAP low multipole and for the ellipticity in BOOMERanG CMB maps?

    Full text link
    We have measured the ellipticity of several degree scale anisotropies in the BOOMERanG maps of the Cosmic Microwave Background (CMB) at 150 GHz. The average ellipticity is around 2.6-2.7. The biases of the estimator of the ellipticity and for the noise are small in this case. Large spot elongation had been detected also for COBE-DMR maps. If this effect is due to geodesic mixing, it would indicate a non precisely zero curvature of the Universe which is among the discussed reasons of the WMAP low multipole anomaly. Both effects are related to the diameter of the Universe: the geodesics mixing through hyperbolic geometry, low multipoles through boundary conditions.This common reason can also be related with the origin of the the cosmological constant: the modes of vacuum fluctuations conditioned by the boundary conditions lead to a value of the cosmological constant being in remarkable agreement with the supernovae observations.Comment: Added: two co-authors and a comment on the possible relation of the discussed CMB properties with the origin of the observed value of the cosmological constan

    PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium

    Full text link
    Future cosmology space missions will concentrate on measuring the polarization of the Cosmic Microwave Background, which potentially carries invaluable information about the earliest phases of the evolution of our universe. Such ambitious projects will ultimately be limited by the sensitivity of the instrument and by the accuracy at which polarized foreground emission from our own Galaxy can be subtracted out. We present the PILOT balloon project which will aim at characterizing one of these foreground sources, the polarization of the dust continuum emission in the diffuse interstellar medium. The PILOT experiment will also constitute a test-bed for using multiplexed bolometer arrays for polarization measurements. We present the results of ground tests obtained just before the first flight of the instrument.Comment: 17 pages, 13 figures. Presented at SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII. To be published in Proc. SPIE volume 915
    corecore