78 research outputs found

    Large-scale lognormality in turbulence modeled by Ornstein-Uhlenbeck process

    Get PDF
    Lognormality was found experimentally for coarse-grained squared turbulence velocity and velocity increment when the coarsening scale is comparable to the correlation scale of the velocity (Mouri et al. Phys. Fluids 21, 065107, 2009). We investigate this large-scale lognormality by using a simple stochastic process with correlation, the Ornstein-Uhlenbeck (OU) process. It is shown that the OU process has a similar large-scale lognormality, which is studied numerically and analytically.Comment: 7 pages, 5 figures, PRE in pres

    Weak and strong wave turbulence spectra for elastic thin plate

    Get PDF
    Variety of statistically steady energy spectra in elastic wave turbulence have been reported in numerical simulations, experiments, and theoretical studies. Focusing on the energy levels of the system, we have performed direct numerical simulations according to the F\"{o}ppl--von K\'{a}rm\'{a}n equation, and successfully reproduced the variability of the energy spectra by changing the magnitude of external force systematically. When the total energies in wave fields are small, the energy spectra are close to a statistically steady solution of the kinetic equation in the weak turbulence theory. On the other hand, in large-energy wave fields, another self-similar spectrum is found. Coexistence of the weakly nonlinear spectrum in large wavenumbers and the strongly nonlinear spectrum in small wavenumbers are also found in moderate energy wave fields.Comment: 5 pages, 3 figure

    Single-wavenumber Representation of Nonlinear Energy Spectrum in Elastic-Wave Turbulence of {F}\"oppl-von {K}\'arm\'an Equation: Energy Decomposition Analysis and Energy Budget

    Get PDF
    A single-wavenumber representation of nonlinear energy spectrum, i.e., stretching energy spectrum is found in elastic-wave turbulence governed by the F\"oppl-von K\'arm\'an (FvK) equation. The representation enables energy decomposition analysis in the wavenumber space, and analytical expressions of detailed energy budget in the nonlinear interactions are obtained for the first time in wave turbulence systems. We numerically solved the FvK equation and observed the following facts. Kinetic and bending energies are comparable with each other at large wavenumbers as the weak turbulence theory suggests. On the other hand, the stretching energy is larger than the bending energy at small wavenumbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode aka_{\bm{k}} and its companion mode aka_{-\bm{k}} is observed at the small wavenumbers. Energy transfer shows that the energy is input into the wave field through stretching-energy transfer at the small wavenumbers, and dissipated through the quartic part of kinetic-energy transfer at the large wavenumbers. A total-energy flux consistent with the energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.Comment: 11 pages, 4 figure

    Identification of Separation Wavenumber between Weak and Strong Turbulence Spectra for Vibrating Plate

    Get PDF
    A weakly nonlinear spectrum and a strongly nonlinear spectrum coexist in a statistically steady state of elastic wave turbulence. The analytical representation of the nonlinear frequency is obtained by evaluating the extended self-nonlinear interactions. The {\em critical\/} wavenumbers at which the nonlinear frequencies are comparable with the linear frequencies agree with the {\em separation\/} wavenumbers between the weak and strong turbulence spectra. We also confirm the validity of our analytical representation of the separation wavenumbers through comparison with the results of direct numerical simulations by changing the material parameters of a vibrating plate

    Fluctuations of statistics among subregions of a turbulence velocity field

    Full text link
    To study subregions of a turbulence velocity field, a long record of velocity data of grid turbulence is divided into smaller segments. For each segment, we calculate statistics such as the mean rate of energy dissipation and the mean energy at each scale. Their values significantly fluctuate, in lognormal distributions at least as a good approximation. Each segment is not under equilibrium between the mean rate of energy dissipation and the mean rate of energy transfer that determines the mean energy. These two rates still correlate among segments when their length exceeds the correlation length. Also between the mean rate of energy dissipation and the mean total energy, there is a correlation characterized by the Reynolds number for the whole record, implying that the large-scale flow affects each of the segments.Comment: 7 pages, accepted by Physics of Fluids (see http://pof.aip.org/

    ハンバイ カツドウ ノ ガイブセイ ト セイサク ノ ユウコウセイ

    Full text link

    On Landau's prediction for large-scale fluctuation of turbulence energy dissipation

    Full text link
    Kolmogorov's theory for turbulence in 1941 is based on a hypothesis that small-scale statistics are uniquely determined by the kinematic viscosity and the mean rate of energy dissipation. Landau remarked that the local rate of energy dissipation should fluctuate in space over large scales and hence should affect small-scale statistics. Experimentally, we confirm the significance of this large-scale fluctuation, which is comparable to the mean rate of energy dissipation at the typical scale for energy-containing eddies. The significance is independent of the Reynolds number and the configuration for turbulence production. With an increase of scale r above the scale of largest energy-containing eddies, the fluctuation becomes to have the scaling r^-1/2 and becomes close to Gaussian. We also confirm that the large-scale fluctuation affects small-scale statistics.Comment: 9 pages, accepted by Physics of Fluids (see http://pof.aip.org
    corecore