6 research outputs found

    Consistently low levels of histidine-rich glycoprotein as a new prognostic biomarker for sepsis: A multicenter prospective observational study

    Get PDF
    Background Few sepsis biomarkers accurately predict severity and mortality. Previously, we had reported that first-day histidine-rich glycoprotein (HRG) levels were significantly lower in patients with sepsis and were associated with mortality. Since the time trends of HRG are unknown, this study focused on the time course of HRG in patients with sepsis and evaluated the differences between survivors and non-survivors. Methods A multicenter prospective observational study was conducted involving 200 patients with sepsis in 16 Japanese hospitals. Blood samples were collected on days 1, 3, 5, and 7, and 28-day mortality was used for survival analysis. Plasma HRG levels were determined using a modified quantitative sandwich enzyme-linked immunosorbent assay. Results First-day HRG levels in non-survivors were significantly lower than those in survivors (mean, 15.7 [95% confidence interval (CI), 13.4-18.1] vs 20.7 [19.5-21.9] mu g/mL; P = 0.006). Although there was no time x survivors/non-survivors interaction in the time courses of HRG (P = 0.34), the main effect of generalized linear mixed models was significant (P Conclusions HRG levels in non-survivors were consistently lower than those in survivors during the first seven days of sepsis. Repeatedly measured HRG levels were significantly associated with mortality. Furthermore, the predictive power of HRG for mortality may be superior to that of other singular biomarkers, including presepsin, procalcitonin, and C-reactive protein

    Rationale and study design of a randomized controlled trial to investigate the renoprotective effect of canagliflozin assessed by test of renal hemodynamics in diabetic kidney disease (the FAGOTTO study)

    No full text
    Abstract Background Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are considered to have the potential to maintain renal function by correcting glomerular hypertension in patients with diabetic kidney disease (DKD). The aim of this study is to demonstrate the renoprotective effect of SGLT2i by measuring renal hemodynamics, including glomerular filtration fraction (FF), in type 2 diabetic patients with moderate renal dysfunction. Methods Renoprotective effect of canagliflozin derived from test of renal hemodynamics in diabetic kidney disease (FAGOTTO) study is a 12-week multicenter, open-label, randomized (1:1), parallel-group trial of type 2 diabetic patients with diabetic kidney disease (30 ≤ estimated glomerular filtration rate [eGFR] ≤ 60 mL/min/1.73 m2). A total of 110 patients are to be randomly allocated to receive once-daily canagliflozin 100 mg or control (standard therapy). FF will be calculated by dividing the measured GFR (mGFR) by the effective renal plasma flow (eRPF). mGFR and eRPF will be measured by the clearance of inulin and para-aminohippuric acid (PAH), respectively. The primary endpoint of this trial is the percentage change in FF after 4 weeks of treatment in the canagliflozin and control groups. Discussion The FAGOTTO study will elucidate the mechanism of the renoprotective action of SGLT2i. The background, rationale, and study design of this trial are presented. To date, > 80 patients have been enrolled in this trial. The study will end in 2025. Trial registration jRCT (Japan Registry Of Clinical Trials) jRCTs041200069. Date of registration: November 27, 2020
    corecore