238 research outputs found
Self-stabilizing Numerical Iterative Computation
Many challenging tasks in sensor networks, including sensor calibration,
ranking of nodes, monitoring, event region detection, collaborative filtering,
collaborative signal processing, {\em etc.}, can be formulated as a problem of
solving a linear system of equations. Several recent works propose different
distributed algorithms for solving these problems, usually by using linear
iterative numerical methods.
In this work, we extend the settings of the above approaches, by adding
another dimension to the problem. Specifically, we are interested in {\em
self-stabilizing} algorithms, that continuously run and converge to a solution
from any initial state. This aspect of the problem is highly important due to
the dynamic nature of the network and the frequent changes in the measured
environment.
In this paper, we link together algorithms from two different domains. On the
one hand, we use the rich linear algebra literature of linear iterative methods
for solving systems of linear equations, which are naturally distributed with
rapid convergence properties. On the other hand, we are interested in
self-stabilizing algorithms, where the input to the computation is constantly
changing, and we would like the algorithms to converge from any initial state.
We propose a simple novel method called \syncAlg as a self-stabilizing variant
of the linear iterative methods. We prove that under mild conditions the
self-stabilizing algorithm converges to a desired result. We further extend
these results to handle the asynchronous case.
As a case study, we discuss the sensor calibration problem and provide
simulation results to support the applicability of our approach
Monitoring Partially Synchronous Distributed Systems using SMT Solvers
In this paper, we discuss the feasibility of monitoring partially synchronous
distributed systems to detect latent bugs, i.e., errors caused by concurrency
and race conditions among concurrent processes. We present a monitoring
framework where we model both system constraints and latent bugs as
Satisfiability Modulo Theories (SMT) formulas, and we detect the presence of
latent bugs using an SMT solver. We demonstrate the feasibility of our
framework using both synthetic applications where latent bugs occur at any time
with random probability and an application involving exclusive access to a
shared resource with a subtle timing bug. We illustrate how the time required
for verification is affected by parameters such as communication frequency,
latency, and clock skew. Our results show that our framework can be used for
real-life applications, and because our framework uses SMT solvers, the range
of appropriate applications will increase as these solvers become more
efficient over time.Comment: Technical Report corresponding to the paper accepted at Runtime
Verification (RV) 201
Laminar Necrosis and Hypoxic Damage of the Placenta: A Case-Control Study
The aim of this study is to verify the role of laminar necrosis (LN) in the diagnosis of hypoxic damage of the placenta. This is a retrospective case-control study in which 50 cases with laminar necrosis were compared with 100 gestational age-matched controls without laminar necrosis in a 1:2 ratio. The parameters analyzed were: the presence of other placental lesions, obstetric characteristics and neonatal outcome. For each of the 50 cases, the area affected by the lesion was detected, and the lesions were classified into three groups based on the morphology and time of onset of the lesion in order to understand whether these characteristics of the lesion had a clinical-pathology. The results showed that including the search for LN among placental lesions generally examined is useful to guide the pathologist in the diagnosis of placental dysfunction of hypoxic origin
Reduction of neurovascular damage resulting from microelectrode insertion into the cerebral cortex using
Penetrating neural probe technologies allow investigators to record electrical signals in the brain. The implantation of probes causes acute tissue damage, partially due to vasculature disruption during probe implantation. This trauma can cause abnormal electrophysiological responses and temporary increases in neurotransmitter levels, and perpetuate chronic immune responses. A significant challenge for investigators is to examine neurovascular features below the surface of the brain in vivo. The objective of this study was to investigate localized bleeding resulting from inserting microscale neural probes into the cortex using two-photon microscopy (TPM) and to explore an approach to minimize blood vessel disruption through insertion methods and probe design. 3D TPM images of cortical neurovasculature were obtained from mice and used to select preferred insertion positions for probe insertion to reduce neurovasculature damage. There was an 82.8 ± 14.3% reduction in neurovascular damage for probes inserted in regions devoid of major (>5 µm) sub-surface vessels. Also, the deviation of surface vessels from the vector normal to the surface as a function of depth and vessel diameter was measured and characterized. 68% of the major vessels were found to deviate less than 49 µm from their surface origin up to a depth of 500 µm. Inserting probes more than 49 µm from major surface vessels can reduce the chances of severing major sub-surface neurovasculature without using TPM.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85401/1/7_4_046011.pd
Policy Driven Management for Distributed Systems
Separating management policy from the automated managers which interpret the policy facilitates the dynamic change of behavior of a distributed management system. This permits it to adapt to evolutionary changes in the system being managed and to new application requirements. Changing the behavior of automated managers can be achieved by changing the policy without having to reimplement them—this permits the reuse of the managers in different environments. It is also useful to have a clear specification of the policy applying to human managers in an enterprise. This paper describes the work on policy which has come out of two related ESPRIT funded projects, SysMan and IDSM. Two classes of policy are elaborated—authorization policies define what a manager is permitted to do and obligation policies define what a manager must do. Policies are specified as objects which define a relationship between subjects (managers) and targets (managed objects). Domains are used to group the objects to which a policy applies. Policy objects also have attributes specifying the action to be performed and constraints limiting the applicability of the policy. We show how a number of example policies can be modeled using these objects and briefly mention issues relating to policy hierarchy and conflicts between overlapping policies. © 1994, Plenum Publishing Corporation. All rights reserved.Accepted versio
The SpikerBox: A Low Cost, Open-Source BioAmplifier for Increasing Public Participation in Neuroscience Inquiry
Although people are generally interested in how the brain functions, neuroscience education for the public is hampered by a lack of low cost and engaging teaching materials. To address this, we developed an open-source tool, the SpikerBox, which is appropriate for use in middle/high school educational programs and by amateurs. This device can be used in easy experiments in which students insert sewing pins into the leg of a cockroach, or other invertebrate, to amplify and listen to the electrical activity of neurons. With the cockroach leg preparation, students can hear and see (using a smartphone oscilloscope app we have developed) the dramatic changes in activity caused by touching the mechanosensitive barbs. Students can also experiment with other manipulations such as temperature, drugs, and microstimulation that affect the neural activity. We include teaching guides and other resources in the supplemental materials. These hands-on lessons with the SpikerBox have proven to be effective in teaching basic neuroscience
Anthracycline-Free Neoadjuvant Treatment in Patients with HER2-Positive Breast Cancer: Real-Life Use of Pertuzumab, Trastuzumab and Taxanes Association with an Exploratory Analysis of PIK3CA Mutational Status
HER2 is considered one of the most traditional prognostic and predictive biomarkers in breast cancer. Literature data confirmed that the addition of pertuzumab to a standard neoadjuvant chemotherapy backbone (either with or without anthracyclines), in patients with human epidermal growth factor receptor 2 (HER2)-positive early breast cancer (EBC), leads to a higher pathological complete response (pCR) rate, which is known to correlate with a better prognosis. In this retrospective analysis, 47 consecutive patients with HER2-positive EBC received sequential anthracyclines and taxanes plus trastuzumab (ATH) or pertuzumab, trastuzumab and docetaxel (THP). Despite the limited sample size, this monocentric experience highlights the efficacy (in terms of pCR) and safety of THP in the neoadjuvant setting of HER2-positive EBC as an anthracycline-free approach. Given the role of PIK3CA as a prognostic and therapeutic target in breast cancer, tumors were also analyzed to assess the PIK3CA mutational status. Thirty-eight out of forty-seven patients were evaluated, and PIK3CA variants were identified in 21% of tumor samples: overall, one mutation was detected in exon 4 (2.6%), two in exon 9 (5.3%) and four in exon 20 (10.5%). Of note, one sample showed concurrent mutations in exons 9 (codon 545) and 20 (codon 1047). Among patients reaching pCR (n = 13), 38.5% were PIK3CA mutants; on the other hand, among those lacking pCR (n = 25), just 12% showed PIK3CA variants. Regarding THP-treated mutant patients (n = 5), 80% reached pCR (three hormone-receptor-negative, one hormone-receptor-positive). Interestingly, the only patient not achieving pCR had a tumor with two co-occurring PIK3CA mutations. In conclusion, this study provides new evidence about the efficacy and good safety profile of THP, compared to the ATH regimen, as an anthracycline-free neoadjuvant treatment of HER2-positive EBC. Further studies on larger/multicentric cohorts are planned for more in-depth analysis to confirm our molecular and clinical results
Assessment of alternative divertor configurations as an exhaust solution for DEMO
Plasma exhaust has been identified as a major challenge towards the realisation of magnetic confinement fusion. To mitigate the risk that the single null divertor (SND) with a high radiation fraction in the scrape-of-layer (SOL) adopted for ITER will not extrapolate to a DEMO reactor, the EUROfusion consortium is assessing potential benefits and engineering challenges of alternative divertor configurations. Alternative configurations that could be readily adopted in a DEMO design include the X divertor (XD), the Super-X divertor (SXD), the Snowflake divertor (SFD) and the double null divertor (DND). The flux flaring towards the divertor target of the XD is limited by the minimum grazing angle at the target set by gaps and misalignments. The characteristic increase of the target radius in the SXD is a trade-off with the increased TF coil volume, but, ultimately, also limited by forces onto coils. Engineering constraints also limit XD and SXD characteristics to the outer divertor leg with a solution for the inner leg requiring up-down symmetric configurations. Capital cost increases with respect to a SND configuration are largest for SXD and SFD, which require both significantly more poloidal field coil conductors and in the case of the SXD also more toroidal field coil conductors. Boundary models with increasing degrees of complexity have been used to predict the beneficial effect of the alternative configurations on exhaust performance. While all alternative configurations should decrease the power that must be radiated in the outer divertor, only the DND and possibly the SFD also ease the radiation requirements in the inner divertor. These decreases of the radiation requirements are however expected to be small making the ability of alternative divertors to increase divertor radiation without excessive core performance degradation their main advantage. Initial 2D fluid modeling of argon seeding in XD and SFD configurations indicate such advantages over the SND, while results for SXD and DND are still pending. Additional improvements, expected from increased turbulence in the low poloidal field region of the SFD also remain to be verified. A more precise comparison with the SND as well as absolute quantitative predictions for all configurations requires more complete physics models that are currently only being developed
- …