17,223 research outputs found

    Curved Graphene Nanoribbons: Structure and Dynamics of Carbon Nanobelts

    Full text link
    Carbon nanoribbons (CNRs) are graphene (planar) structures with large aspect ratio. Carbon nanobelts (CNBs) are small graphene nanoribbons rolled up into spiral-like structures, i. e., carbon nanoscrolls (CNSs) with large aspect ratio. In this work we investigated the energetics and dynamical aspects of CNBs formed from rolling up CNRs. We have carried out molecular dynamics simulations using reactive empirical bond-order potentials. Our results show that similarly to CNSs, CNBs formation is dominated by two major energy contribution, the increase in the elastic energy due to the bending of the initial planar configuration (decreasing structural stability) and the energetic gain due to van der Waals interactions of the overlapping surface of the rolled layers (increasing structural stability). Beyond a critical diameter value these scrolled structures can be even more stable (in terms of energy) than their equivalent planar configurations. In contrast to CNSs that require energy assisted processes (sonication, chemical reactions, etc.) to be formed, CNBs can be spontaneously formed from low temperature driven processes. Long CNBs (length of \sim 30.0 nm) tend to exhibit self-folded racket-like conformations with formation dynamics very similar to the one observed for long carbon nanotubes. Shorter CNBs will be more likely to form perfect scrolled structures. Possible synthetic routes to fabricate CNBs from graphene membranes are also addressed

    Polarized currents and spatial separation of Kondo state: NRG study of spin-orbital effect in a double QD

    Full text link
    A double quantum dot device, connected to two channels that only see each other through interdot Coulomb repulsion, is analyzed using the numerical renormalization group technique. By using a two-impurity Anderson model, and parameter values obtained from experiment [S. Amasha {\it et al.}, Phys. Rev. Lett. {\bf 110}, 046604 (2013)], it is shown that, by applying a moderate magnetic field, and adjusting the gate potential of each quantum dot, opposing spin polarizations are created in each channel. Furthermore, through a well defined change in the gate potentials, the polarizations can be reversed. This polarization effect is clearly associated to a spin-orbital Kondo state having a Kondo peak that originates from spatially separated parts of the device. This fact opens the exciting possibility of experimentally probing the internal structure of an SU(2) Kondo state.Comment: 4+ pages; 4 figures; supplemental material (1 page, 2 figures

    Transport properties of a two impurity system: a theoretical approach

    Get PDF
    A system of two interacting cobalt atoms, at varying distances, was studied in a recent scanning tunneling microscope experiment by Bork et. al.[Nature Phys. 7, 901 (2011)]. We propose a microscopic model that explains, for all experimentally analyzed interatomic distances, the physics observed in these experiments. Our proposal is based on the two-impurity Anderson model, with the inclusion of a two-path geometry for charge transport. This many-body system is treated in the finite-U slave boson mean-field approximation and the logarithmic-discretization embedded-cluster approximation. We physically characterize the different charge transport regimes of this system at various interatomic distances and show that, as in the experiments, the features observed in the transport properties depend on the presence of two impurities but also on the existence of two conducting channels for electron transport. We interpret the splitting observed in the conductance as the result of the hybridization of the two Kondo resonances associated with each impurity.Comment: 5 pages, 5 figure

    Transport properties of strongly correlated electrons in quantum dots using a simple circuit model

    Full text link
    Numerical calculations are shown to reproduce the main results of recent experiments involving nonlocal spin control in nanostructures (N. J. Craig et al., Science 304, 565 (2004)). In particular, the splitting of the zero-bias-peak discovered experimentally is clearly observed in our studies. To understand these results, a simple "circuit model" is introduced and shown to provide a good qualitative description of the experiments. The main idea is that the splitting originates in a Fano anti-resonance, which is caused by having one quantum dot side-connected in relation to the current's path. This scenario provides an explanation of Craig et al.'s results that is alternative to the RKKY proposal, which is here also addressed.Comment: 5 pages, 5 figure

    Evolução dos preços da carne ovina na Bahia no período de 2002 a 2009.

    Get PDF
    bitstream/item/86457/1/Midia-Evolucao-dos-precos-da-carne.pd

    New results for the t-J model in ladders: Changes in the spin liquid state with applied magnetic field. Implications for the cuprates

    Full text link
    Exact Diagonalization calculations are presented for the t-J model in the presence of a uniform magnetic field. Results for 2xL ladders (L=8,10,12) and 4x4 square clusters with 1 and 2 holes indicate that the diamagnetic response to a perpendicular magnetic field tends to induce a spin liquid state in the spin background. The zero-field spin liquid state of a two-leg ladder is reinforced by the magnetic field: a considerable increase of rung antiferromagnetic correlations is observed for J/t up to 0.6, for 1 and 2 holes. Pair-breaking is also clearly observed in the ladders and seems to be associated in part with changes promoted by the field in the spin correlations around the zero-field pair. In the 4x4 cluster, the numerical results seem to indicate that the field-induced spin liquid state competes with the zero-field antiferromagnetic short-range-order, the spin liquid state being favored by higher doping and smaller values of J/t. It is interesting to note that the field-effect can also be observed in a 2x2 plaquette with 1 and 2 holes. This opens up the possibility of gaining a qualitative understanding of the effect.Comment: 16 pages, 7 figures, latex New results adde

    Overlap Removal of Dimensionality Reduction Scatterplot Layouts

    Full text link
    Dimensionality Reduction (DR) scatterplot layouts have become a ubiquitous visualization tool for analyzing multidimensional data items with presence in different areas. Despite its popularity, scatterplots suffer from occlusion, especially when markers convey information, making it troublesome for users to estimate items' groups' sizes and, more importantly, potentially obfuscating critical items for the analysis under execution. Different strategies have been devised to address this issue, either producing overlap-free layouts, lacking the powerful capabilities of contemporary DR techniques in uncover interesting data patterns, or eliminating overlaps as a post-processing strategy. Despite the good results of post-processing techniques, the best methods typically expand or distort the scatterplot area, thus reducing markers' size (sometimes) to unreadable dimensions, defeating the purpose of removing overlaps. This paper presents a novel post-processing strategy to remove DR layouts' overlaps that faithfully preserves the original layout's characteristics and markers' sizes. We show that the proposed strategy surpasses the state-of-the-art in overlap removal through an extensive comparative evaluation considering multiple different metrics while it is 2 or 3 orders of magnitude faster for large datasets.Comment: 11 pages and 9 figure
    corecore