1,451 research outputs found
Influence of normal mammary epithelium on breast cancer progression: the protective role of early pregnancy
AIMS AND BACKGROUND: The microenvironment has a well recognized role in breast cancer progression. Despite different theories, the mechanism of early pregnancy protection in mammary carcinogenesis is unknown. Since pregnancy is responsible for mammary gland differentiation, we tested the hypothesis that differentiated mammary epithelial cells may inhibit breast cancer progression. In other words, the protective role of early pregnancy could be due to the inhibitory influences of the more differentiated mammary tissue.
METHODS: In order to test our hypothesis, we used 30 female Balb/c nude mice and MCF-7 cells of breast adenocarcinoma. The female mice were divided into two test groups, group I (GI) and group II (GII), and a control group. In GII, the animals were submitted to epithelial removal in the left fourth inguinal mammary gland at 3 weeks of age. Both groups were given continuous hormonal treatment to simulate the pregnancy development of the mammary gland. Two million MCF-7 cells were then injected into the fourth inguinal mammary gland (GI) or in the respective cleared mammary fat pad (GII). Five weeks later the mice were sacrificed and their tumors removed. Tumor development rates and tumor volumes were determined and proliferation and apoptosis were evaluated by immunohistochemistry.
RESULTS: Tumors of GII mice had a larger mean volume than those of GI mice (P = 0.001, Mann-Whitney U-test) and an apparent increase in proliferation, demonstrated by a higher staining intensity for proliferating cell nuclear antigen (PCNA). As tumors presented caspase 8 staining, there may be apoptotic activation involved in cell death, mainly through an extrinsic pathway.
CONCLUSIONS: These results suggest that a differentiated intact mammary gland may have an inhibitory influence on mammary tumor growth in mice
Biomaterial-related infections
Medical devices are a typical and important part of health care for both diagnostic and therapeutic purposes [...
Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression.
Aim: To evaluate the effects of preventive treatment with low-level laser therapy (LLLT) on progression of dystrophy in mdx mice. Methods: Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J) or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally) 5 times per week for 14 weeks (from 6th to 20th week of age). Morphological changes, creatine kinase (CK) activity and mRNA gene expression were assessed in animals at 20th week of age. Results: Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p = 0.0203) in animals treated with LLLT (864.70 U.l−1, SEM 226.10) than placebo (1708.00 U.l−1, SEM 184.60). mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (p<0.05): TNF-α (placebo-control = 0.51 µg/µl [SEM 0.12], - LLLT = 0.048 µg/µl [SEM 0.01]), IL-1β (placebo-control = 2.292 µg/µl [SEM 0.74], - LLLT = 0.12 µg/µl [SEM 0.03]), IL-6 (placebo-control = 3.946 µg/µl [SEM 0.98], - LLLT = 0.854 µg/µl [SEM 0.33]), IL-10 (placebo-control = 1.116 µg/µl [SEM 0.22], - LLLT = 0.352 µg/µl [SEM 0.15]), and COX-2 (placebo-control = 4.984 µg/µl [SEM 1.18], LLLT = 1.470 µg/µl [SEM 0.73]). Conclusion: Irradiation of superpulsed LLLT on successive days five times per week for 14 weeks decreased morphological changes, skeletal muscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy
Techniques for Arbuscular Mycorrhiza Inoculum Reduction
It is well established that arbuscular mycorrhizal (AM) fungi can play a significant role in sustainable crop production and environmental conservation. With the increasing awareness of the ecological significance of mycorrhizas and their diversity, research needs to be directed away from simple records of their occurrence or casual speculation of their function (Smith and Read 1997). Rather, the need is for empirical studies and investigations of the quantitative aspects of the distribution of different types and their contribution to the function of ecosystems.
There is no such thing as a fungal effect or a plant effect, but there is an interaction between both symbionts. This results from the AM fungi and plant community size and structure, soil and climatic conditions, and the interplay between all these factors (Kahiluoto et al. 2000). Consequently, it is readily understood that it is the problems associated with methodology that limit our understanding of the functioning and effects of AM fungi within field communities.
Given the ubiquous presence of AM fungi, a major constraint to the evaluation of the activity of AM colonisation has been the need to account for the indigenous soil native inoculum. This has to be controlled (i.e. reduced or eliminated) if we are to obtain a true control treatment for analysis of arbuscular mycorrhizas in natural substrates. There are various procedures possible for achieving such an objective, and the purpose of this chapter is to provide details of a number of techniques and present some evaluation of their advantages and disadvantages.
Although there have been a large number of experiments to investigated the effectiveness of different sterilization procedures for reducing pathogenic soil fungi, little information is available on their impact on beneficial organisms such as AM fungi. Furthermore, some of the techniques have been shown to affect physical and chemical soil characteristics as well as eliminate soil microorganisms that can interfere with the development of mycorrhizas, and this creates difficulties in the interpretation of results simply in terms of possible mycorrhizal activity.
An important subject is the differentiation of methods that involve sterilization from those focussed on indigenous inoculum reduction. Soil sterilization aims to destroy or eliminate microbial cells while maintaining the existing chemical and physical characteristics of the soil (Wolf and Skipper 1994). Consequently, it is often used for experiments focussed on specific AM fungi, or to establish a negative control in some other types of study. In contrast, the purpose of inoculum reduction techniques is to create a perturbation that will interfere with mycorrhizal formation, although not necessarily eliminating any component group within the inoculum. Such an approach allows the establishment of different degrees of mycorrhizal formation between treatments and the study of relative effects.
Frequently the basic techniques used to achieve complete sterilization or just an inoculum reduction may be similar but the desired outcome is accomplished by adjustments of the dosage or intensity of the treatment. The ultimate choice of methodology for establishing an adequate non-mycorrhizal control depends on the design of the particular experiments, the facilities available and the amount of soil requiring treatment
Lepton Acceleration in Pulsar Wind Nebulae
Pulsar Wind Nebulae (PWNe) act as calorimeters for the relativistic pair
winds emanating from within the pulsar light cylinder. Their radiative
dissipation in various wavebands is significantly different from that of their
pulsar central engines: the broadband spectra of PWNe possess characteristics
distinct from those of pulsars, thereby demanding a site of lepton acceleration
remote from the pulsar magnetosphere. A principal candidate for this locale is
the pulsar wind termination shock, a putatively highly-oblique,
ultra-relativistic MHD discontinuity. This paper summarizes key characteristics
of relativistic shock acceleration germane to PWNe, using predominantly Monte
Carlo simulation techniques that compare well with semi-analytic solutions of
the diffusion-convection equation. The array of potential spectral indices for
the pair distribution function is explored, defining how these depend
critically on the parameters of the turbulent plasma in the shock environs.
Injection efficiencies into the acceleration process are also addressed.
Informative constraints on the frequency of particle scattering and the level
of field turbulence are identified using the multiwavelength observations of
selected PWNe. These suggest that the termination shock can be comfortably
invoked as a principal injector of energetic leptons into PWNe without
resorting to unrealistic properties for the shock layer turbulence or MHD
structure.Comment: 19 pages, 5 figures, invited review to appear in Proc. of the
inaugural ICREA Workshop on "The High-Energy Emission from Pulsars and their
Systems" (2010), eds. N. Rea and D. Torres, (Springer Astrophysics and Space
Science series
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Biofilms of non-Candida albicans Candida species : quantification, structure and matrix composition
Most cases of candidiasis have been attributed to C. albicans, but recently, non-
Candida albicans Candida (NCAC) species have been identified as common
pathogens. The ability of Candida species to form biofilms has important clinical
repercussions due to their increased resistance to antifungal therapy and the ability
of yeast cells within the biofilms to withstand host immune defenses. Given this
clinical importance of the biofilm growth form, the aim of this study was
to characterize biofilms produced by three NCAC species, namely C. parapsilosis,
C. tropicalis and C. glabrata. The biofilm forming ability of clinical isolates of
C. parapsilosis, C. tropicalis and C. glabrata recovered from different sources, was
evaluated by crystal violet staining. The structure and morphological characteristics
of the biofilms were also assessed by scanning electron microscopy and the
biofilm matrix composition analyzed for protein and carbohydrate content. All
NCAC species were able to form biofilms although these were less extensive for
C. glabrata compared with C. parapsilosis and C. tropicalis. It was evident that C.
parapsilosis biofilm production was highly strain dependent, a feature not evident
with C. glabrata and C. tropicalis. Scanning electron microscopy revealed structural
differences for biofilms with respect to cell morphology and spatial arrangement.
Candida parapsilosis biofilm matrices had large amounts of carbohydrate with less
protein. Conversely, matrices extracted from C. tropicalis biofilms had low
amounts of carbohydrate and protein. Interestingly, C. glabrata biofilm matrix
was high in both protein and carbohydrate content. The present work demonstrates
that biofilm forming ability, structure and matrix composition are highly
species dependent with additional strain variability occurring with C. parapsilosis.Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/28341/2006, PDTC/BIO/61112/200
Management of Streptococcus mutans-Candida spp. Oral biofilms’ infections: Paving the way for effective clinical interventions
Oral diseases are considered the most common noncommunicable diseases and are related to serious local and systemic disorders. Oral pathogens can grow and spread in the oral mucosae and frequently in biomaterials (e.g., dentures or prostheses) under polymicrobial biofilms, leading to several disorders such as dental caries and periodontal disease. Biofilms harbor a complex array of interacting microbes, increasingly unapproachable to antimicrobials and with dynamic processes key to disease pathogenicity, which partially explain the gradual loss of response towards conventional therapeutic regimens. New drugs (synthesized and natural) and other therapies that have revealed promising results for the treatment or control of these mixed biofilms are presented and discussed here. A structured search of bibliographic databases was applied to include recent research. There are several promising new approaches in the treatment of Candida spp.–Streptococcus mutans oral mixed biofilms that could be clinically applied in the near future. These findings confirm the importance of developing effective therapies for oral Candida–bacterial infections.C.F.R. would like to acknowledge the UID/EQU/00511/2019 Project—Laboratory of Process Engineering, Environment, Biotechnology and Energy (LEPABE), financed by national funds through FCT/MCTES (PIDDAC). N.M. would like to thank the Portuguese Foundation for Science and Technology (FCT-Portugal) for the Strategic project ref. UID/BIM/04293/2013 and “NORTE2020—Northern Regional Operational Program” (NORTE-01-0145-FEDER-000012)
Review on the influence of process parameters in incremental sheet forming
Incremental sheet forming (ISF) is a relatively new flexible forming process. ISF has excellent adaptability to conventional milling machines and requires minimum use of complex tooling, dies and forming press, which makes the process cost-effective and easy to automate for various applications. In the past two decades, extensive research on ISF has resulted in significant advances being made in fundamental understanding and development of new processing and tooling solutions. However, ISF has yet to be fully implemented to mainstream high-value manufacturing industries due to a number of technical challenges, all of which are directly related to ISF process parameters. This paper aims to provide a detailed review of the current state-of-the-art of ISF processes in terms of its technological capabilities and specific limitations with discussions on the ISF process parameters and their effects on ISF processes. Particular attention is given to the ISF process parameters on the formability, deformation and failure mechanics, springback and accuracy and surface roughness. This leads to a number of recommendations that are considered essential for future research effort
- …
