30,057 research outputs found

    Vorton Formation

    Get PDF
    In this paper we present the first analytic model for vorton formation. We start by deriving the microscopic string equations of motion in Witten's superconducting model, and show that in the relevant chiral limit these coincide with the ones obtained from the supersonic elastic models of Carter and Peter. We then numerically study a number of solutions of these equations of motion and thereby suggest criteria for deciding whether a given superconducting loop configuration can form a vorton. Finally, using a recently developed model for the evolution of currents in superconducting strings we conjecture, by comparison with these criteria, that string networks formed at the GUT phase transition should produce no vortons. On the other hand, a network formed at the electroweak scale can produce vortons accounting for up to 6% of the critical density. Some consequences of our results are discussed.Comment: 41 pages; color figures 3-6 not included, but available from authors. To appear in Phys. Rev.

    A Supernova Brane Scan

    Get PDF
    We consider a `brane-world scenario' recently introduced by Dvali, Gabadadze and Porrati, and subsequently proposed as an alternative to a cosmological constant in explaining the current acceleration of the universe. We show that, contrary to these claims, this proposal is already strongly disfavoured by the available Type Ia Supernovae, Cosmic Microwave Background and cluster data.Comment: Further cosmetic changes; to appear in The Astrophysical Journal, v56

    Contribution of domain wall networks to the CMB power spectrum

    Get PDF
    We use three domain wall simulations from the radiation era to the late time dark energy domination era based on the PRS algorithm to calculate the energy-momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.Comment: Submitted to Physics Letters
    • …
    corecore