11,676 research outputs found

    Renormalization in the Henon family, I: universality but non-rigidity

    Get PDF
    In this paper geometric properties of infinitely renormalizable real H\'enon-like maps FF in R2\R^2 are studied. It is shown that the appropriately defined renormalizations RnFR^n F converge exponentially to the one-dimensional renormalization fixed point. The convergence to one-dimensional systems is at a super-exponential rate controlled by the average Jacobian and a universal function a(x)a(x). It is also shown that the attracting Cantor set of such a map has Hausdorff dimension less than 1, but contrary to the one-dimensional intuition, it is not rigid, does not lie on a smooth curve, and generically has unbounded geometry.Comment: 42 pages, 5 picture

    Stably non-synchronizable maps of the plane

    Full text link
    Pecora and Carroll presented a notion of synchronization where an (n-1)-dimensional nonautonomous system is constructed from a given nn-dimensional dynamical system by imposing the evolution of one coordinate. They noticed that the resulting dynamics may be contracting even if the original dynamics are not. It is easy to construct flows or maps such that no coordinate has synchronizing properties, but this cannot be done in an open set of linear maps or flows in Rn\R^n, n2n\geq 2. In this paper we give examples of real analytic homeomorphisms of R2\R^2 such that the non-synchronizability is stable in the sense that in a full C0C^0 neighborhood of the given map, no homeomorphism is synchronizable

    Basins of Attraction for Chimera States

    Get PDF
    Chimera states---curious symmetry-broken states in systems of identical coupled oscillators---typically occur only for certain initial conditions. Here we analyze their basins of attraction in a simple system comprised of two populations. Using perturbative analysis and numerical simulation we evaluate asymptotic states and associated destination maps, and demonstrate that basins form a complex twisting structure in phase space. Understanding the basins' precise nature may help in the development of control methods to switch between chimera patterns, with possible technological and neural system applications.Comment: Please see Ancillary files for the 4 supplementary videos including description (PDF

    The genotype-phenotype relationship in multicellular pattern-generating models - the neglected role of pattern descriptors

    Get PDF
    Background: A deep understanding of what causes the phenotypic variation arising from biological patterning processes, cannot be claimed before we are able to recreate this variation by mathematical models capable of generating genotype-phenotype maps in a causally cohesive way. However, the concept of pattern in a multicellular context implies that what matters is not the state of every single cell, but certain emergent qualities of the total cell aggregate. Thus, in order to set up a genotype-phenotype map in such a spatiotemporal pattern setting one is actually forced to establish new pattern descriptors and derive their relations to parameters of the original model. A pattern descriptor is a variable that describes and quantifies a certain qualitative feature of the pattern, for example the degree to which certain macroscopic structures are present. There is today no general procedure for how to relate a set of patterns and their characteristic features to the functional relationships, parameter values and initial values of an original pattern-generating model. Here we present a new, generic approach for explorative analysis of complex patterning models which focuses on the essential pattern features and their relations to the model parameters. The approach is illustrated on an existing model for Delta-Notch lateral inhibition over a two-dimensional lattice. Results: By combining computer simulations according to a succession of statistical experimental designs, computer graphics, automatic image analysis, human sensory descriptive analysis and multivariate data modelling, we derive a pattern descriptor model of those macroscopic, emergent aspects of the patterns that we consider of interest. The pattern descriptor model relates the values of the new, dedicated pattern descriptors to the parameter values of the original model, for example by predicting the parameter values leading to particular patterns, and provides insights that would have been hard to obtain by traditional methods. Conclusion: The results suggest that our approach may qualify as a general procedure for how to discover and relate relevant features and characteristics of emergent patterns to the functional relationships, parameter values and initial values of an underlying pattern-generating mathematical model

    The impact of heat waves and cold spells on mortality rates in the Dutch population.

    Get PDF
    We conducted the study described in this paper to investigate the impact of ambient temperature on mortality in the Netherlands during 1979-1997, the impact of heat waves and cold spells on mortality in particular, and the possibility of any heat wave- or cold spell-induced forward displacement of mortality. We found a V-like relationship between mortality and temperature, with an optimum temperature value (e.g., average temperature with lowest mortality rate) of 16.5 degrees C for total mortality, cardiovascular mortality, respiratory mortality, and mortality among those [Greater and equal to] 65 year of age. For mortality due to malignant neoplasms and mortality in the youngest age group, the optimum temperatures were 15.5 degrees C and 14.5 degrees C, respectively. For temperatures above the optimum, mortality increased by 0.47, 1.86, 12.82, and 2.72% for malignant neoplasms, cardiovascular disease, respiratory diseases, and total mortality, respectively, for each degree Celsius increase above the optimum in the preceding month. For temperatures below the optimum, mortality increased 0.22, 1.69, 5.15, and 1.37%, respectively, for each degree Celsius decrease below the optimum in the preceding month. Mortality increased significantly during all of the heat waves studied, and the elderly were most effected by extreme heat. The heat waves led to increases in mortality due to all of the selected causes, especially respiratory mortality. Average total excess mortality during the heat waves studied was 12.1%, or 39.8 deaths/day. The average excess mortality during the cold spells was 12.8% or 46.6 deaths/day, which was mostly attributable to the increase in cardiovascular mortality and mortality among the elderly. The results concerning the forward displacement of deaths due to heat waves were not conclusive. We found no cold-induced forward displacement of deaths

    The multipliers of periodic points in one-dimensional dynamics

    Full text link
    It will be shown that the smooth conjugacy class of an SS-unimodal map which does not have a periodic attractor neither a Cantor attractor is determined by the multipliers of the periodic orbits. This generalizes a result by M.Shub and D.Sullivan for smooth expanding maps of the circle

    On the Hyperbolicity of Lorenz Renormalization

    Full text link
    We consider infinitely renormalizable Lorenz maps with real critical exponent α>1\alpha>1 and combinatorial type which is monotone and satisfies a long return condition. For these combinatorial types we prove the existence of periodic points of the renormalization operator, and that each map in the limit set of renormalization has an associated unstable manifold. An unstable manifold defines a family of Lorenz maps and we prove that each infinitely renormalizable combinatorial type (satisfying the above conditions) has a unique representative within such a family. We also prove that each infinitely renormalizable map has no wandering intervals and that the closure of the forward orbits of its critical values is a Cantor attractor of measure zero.Comment: 63 pages; 10 figure

    How large is the spreading width of a superdeformed band?

    Get PDF
    Recent models of the decay out of superdeformed bands can broadly be divided into two categories. One approach is based on the similarity between the tunneling process involved in the decay and that involved in the fusion of heavy ions, and builds on the formalism of nuclear reaction theory. The other arises from an analogy between the superdeformed decay and transport between coupled quantum dots. These models suggest conflicting values for the spreading width of the decaying superdeformed states. In this paper, the decay of superdeformed bands in the five even-even nuclei in which the SD excitation energies have been determined experimentally is considered in the framework of both approaches, and the significance of the difference in the resulting spreading widths is considered. The results of the two models are also compared to tunneling widths estimated from previous barrier height predictions and a parabolic approximation to the barrier shape

    Magnetic Reversal in Nanoscopic Ferromagnetic Rings

    Full text link
    We present a theory of magnetization reversal due to thermal fluctuations in thin submicron-scale rings composed of soft magnetic materials. The magnetization in such geometries is more stable against reversal than that in thin needles and other geometries, where sharp ends or edges can initiate nucleation of a reversed state. The 2D ring geometry also allows us to evaluate the effects of nonlocal magnetostatic forces. We find a `phase transition', which should be experimentally observable, between an Arrhenius and a non-Arrhenius activation regime as magnetic field is varied in a ring of fixed size.Comment: RevTeX, 23 pages, 7 figures, to appear in Phys. Rev.

    No elliptic islands for the universal area-preserving map

    Full text link
    A renormalization approach has been used in \cite{EKW1} and \cite{EKW2} to prove the existence of a \textit{universal area-preserving map}, a map with hyperbolic orbits of all binary periods. The existence of a horseshoe, with positive Hausdorff dimension, in its domain was demonstrated in \cite{GJ1}. In this paper the coexistence problem is studied, and a computer-aided proof is given that no elliptic islands with period less than 20 exist in the domain. It is also shown that less than 1.5% of the measure of the domain consists of elliptic islands. This is proven by showing that the measure of initial conditions that escape to infinity is at least 98.5% of the measure of the domain, and we conjecture that the escaping set has full measure. This is highly unexpected, since generically it is believed that for conservative systems hyperbolicity and ellipticity coexist
    corecore