197 research outputs found

    The DA+dMe eclipsing binary EC13471-1258: its cup runneth over...just

    Full text link
    EC13471-1258 is a detached eclipsing binary with Porb = 3h37m, comprising a DA white dwarf and a dMe dwarf. Total eclipses of the white dwarf lasting 14 min, and a large amplitude ellipsoidal variation are seen in the light curve. Flares from the dMe star occur regularly. Each star contributes roughly equal amounts of light at 5500 Ang. HST STIS spectra show strong Ly alpha with weak metal lines, and yield Teff = 14220 K, log g = 8.34, Z = 1/30th solar, K = 138 km/s and V sin i = 400 km/s for the white dwarf. Optical spectra yield the spectral type (M3.5-4.0), Teff = 3100 K, Z = solar, K = 266 km/s and V sin i = 140 km/s for the dMe star. The H alpha emission line comprises 2 or more components and implies that very weak mass transfer is occurring. The dynamical solution also implies that the dMe star just fills its Roche lobe. Accurate masses and radii for each star were derived: the dMe values favour the Clemens et al. (1998) mass-radius relation. The large rotational velocity of the white dwarf (400 km/s) suggests that the system has transferred mass in the past so that it is presently a hibernating cataclysmic variable. The metallicity contrast between the component stars provides an opportunity for tests of diffusion theory.Comment: 25 pages, 18 figures, accepted for publication in MNRA

    Screening and management practices for polyoma (BK) viremia and nephropathy in kidney transplant recipients from the Lands Down Under: addressing the unknowns and rationale for a multicenter clinical trial

    Get PDF
    Abstract not available.Germaine Wong, Julie Marsh, Martin Howell, Wai H. Lim, Steve Chadban, Toby Coates, Carmel Hawley, Scott Campbell, Nicholas Larkins, Tom Snelling, Lachlan Allan, Armando Teixeira-Pinto, Donna Reidlinger, Kate Wyburn and Jonathan C. Crai

    Biology of Streptococcus mutans-Derived Glucosyltransferases: Role in Extracellular Matrix Formation of Cariogenic Biofilms

    Get PDF
    The importance of Streptococcus mutans in the etiology and pathogenesis of dental caries is certainly controversial, in part because excessive attention is paid to the numbers of S. mutans and acid production while the matrix within dental plaque has been neglected. S. mutans does not always dominate within plaque; many organisms are equally acidogenic and aciduric. It is also recognized that glucosyltransferases from S. mutans (Gtfs) play critical roles in the development of virulent dental plaque. Gtfs adsorb to enamel synthesizing glucans in situ, providing sites for avid colonization by microorganisms and an insoluble matrix for plaque. Gtfs also adsorb to surfaces of other oral microorganisms converting them to glucan producers. S. mutans expresses 3 genetically distinct Gtfs; each appears to play a different but overlapping role in the formation of virulent plaque. GtfC is adsorbed to enamel within pellicle whereas GtfB binds avidly to bacteria promoting tight cell clustering, and enhancing cohesion of plaque. GtfD forms a soluble, readily metabolizable polysaccharide and acts as a primer for GtfB. The behavior of soluble Gtfs does not mirror that observed with surface-adsorbed enzymes. Furthermore, the structure of polysaccharide matrix changes over time as a result of the action of mutanases and dextranases within plaque. Gtfs at distinct loci offer chemotherapeutic targets to prevent caries. Nevertheless, agents that inhibit Gtfs in solution frequently have a reduced or no effect on adsorbed enzymes. Clearly, conformational changes and reactions of Gtfs on surfaces are complex and modulate the pathogenesis of dental caries in situ, deserving further investigation

    Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at √S^{S}NN = 5.02 TeV

    Get PDF
    The second-order Fourier coefficients (υ2_{2}) characterizing the azimuthal distributions of Υ(1S) and Υ(2S) mesons produced in PbPb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV are studied. The Υmesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb1^{-1}. The scalar product method is used to extract the υ2_{2} coefficients of the azimuthal distributions. Results are reported for the rapidity range |y| < 2.4, in the transverse momentum interval 0 < pT_{T} < 50 GeV/c, and in three centrality ranges of 10–30%, 30–50% and 50–90%. In contrast to the J/ψ mesons, the measured υ2_{2} values for the Υ mesons are found to be consistent with zero

    Measurement of prompt D0^{0} and D\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Measurement of the Y(1S) pair production cross section and search for resonances decaying to Y(1S)μ⁺μ⁻ in proton-proton collisions at √s = 13 TeV

    Get PDF
    The fiducial cross section for Y(1S)pair production in proton-proton collisions at a center-of-mass energy of 13TeVin the region where both Y(1S)mesons have an absolute rapidity below 2.0 is measured to be 79 ± 11 (stat) ±6 (syst) ±3 (B)pbassuming the mesons are produced unpolarized. The last uncertainty corresponds to the uncertainty in the Y(1S)meson dimuon branching fraction. The measurement is performed in the final state with four muons using proton-proton collision data collected in 2016 by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9fb1^{-1}. This process serves as a standard model reference in a search for narrow resonances decaying to Y(1S)μ+^{+}μ^{-} in the same final state. Such a resonance could indicate the existence of a tetraquark that is a bound state of two bquarks and two b̅ antiquarks. The tetraquark search is performed for masses in the vicinity of four times the bottom quark mass, between 17.5 and 19.5GeV, while a generic search for other resonances is performed for masses between 16.5 and 27GeV. No significant excess of events compatible with a narrow resonance is observed in the data. Limits on the production cross section times branching fraction to four muons via an intermediate Y(1S)resonance are set as a function of the resonance mass

    Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies

    Get PDF
    corecore