1,724 research outputs found

    The violation of the Hund's rule in semiconductor artificial atoms

    Full text link
    The unrestricted Pople-Nesbet approach for real atoms is adapted to quantum dots, the man-made artificial atoms, under applied magnetic field. Gaussian basis sets are used instead of the exact single-particle orbitals in the construction of the appropriated Slater determinants. Both system chemical potential and charging energy are calculated, as also the expected values for total and z-component in spin states. We have verified the validity of the energy shell structure as well as the Hund's rule state population at zero magnetic field. Above given fields, we have observed a violation of the Hund's rule by the suppression of triplets and quartets states at the 1p energy shell, taken as an example. We also compare our present results with those obtained using the LS-coupling scheme for low electronic occupations. We have focused our attention to ground-state properties for GaAs quantum dots populated up to forty electrons.Comment: 5 pages, 2 figures, submitted to Semic. Sci. Techno

    The Richardson's Law in Large-Eddy Simulations of Boundary Layer flows

    Full text link
    Relative dispersion in a neutrally stratified planetary boundary layer (PBL) is investigated by means of Large-Eddy Simulations (LES). Despite the small extension of the inertial range of scales in the simulated PBL, our Lagrangian statistics turns out to be compatible with the Richardson t3t^3 law for the average of square particle separation. This emerges from the application of nonstandard methods of analysis through which a precise measure of the Richardson constant was also possible. Its values is estimated as C20.5C_2\sim 0.5 in close agreement with recent experiments and three-dimensional direct numerical simulations.Comment: 15 LaTex pages, 4 PS figure

    HYPOTHETICAL HUMAN IMMUNE GENOME COMPLEX GRADIENT MAY HELP TO EXPLAIN THE CONGENITAL ZIKA SYMDROME CATASTROPHE IN BRAZIL: A NEW THEORY

    Get PDF
    There are few data considering human genetics as an important risk factor for birth abnormalities related to ZIKV infection during pregnancy, even though sub-Saharan African populations are apparently more resistant to CZS as compared to populations in the Americas. We hypothesized that single nucleotide variants (SNVs), especially in innate immune genes, could make some populations more susceptible to Zika congenital complications than others. Differences in the SNV frequencies among continental populations provide great potential for Machine Learning techniques. We explored a key immune genomic gradient between individuals from Africa, Asia and Latin America, working with complex signatures, using 297 SNVs. We employed a two-step approach. In the first step, decision trees (DTs) were used to extract the most discriminating SNVs among populations. In the second step, machine learning algorithms were used to evaluate the quality of the SNV pool identified in step one for discriminating between individuals from sub-Saharan African and Latin-American populations. Our results suggest that 10 SNVs from 10 genes (CLEC4M, CD58, OAS2, CD80, VEPH1, CTLA4, CD274, CD209, PLAAT4, CREB3L1) were able to discriminate sub-Saharan Africans from Latin American populations using only immune genome data, with an accuracy close to 100%. Moreover, we found that these SNVs form a genome gradient across the three main continental populations. These SNVs are important elements of the innate immune system and in the response against viruses. Our data support the Human Immune Genome Complex Gradient hypothesis as a new theory that may help to explain the CZS catastrophe in Brazil

    Degradation versus self-assembly of block copolymer micelles

    Full text link
    The stability of micelles self-assembled from block copolymers can be altered by the degradation of the blocks. Slow degradation shifts the equilibrium size distribution of block copolymer micelles and change their properties. Quasi-equilibrium scaling theory shows that the degradation of hydrophobic blocks in the core of micelles destabilize the micelles reducing their size, while the degradation of hydrophilic blocks forming coronas of micelles favors larger micelles and may, at certain conditions, induce the formation of micelles from individual chains.Comment: Published in Langmuir http://pubs.acs.org/doi/pdf/10.1021/la204625

    Density functional calculations of nanoscale conductance

    Full text link
    Density functional calculations for the electronic conductance of single molecules are now common. We examine the methodology from a rigorous point of view, discussing where it can be expected to work, and where it should fail. When molecules are weakly coupled to leads, local and gradient-corrected approximations fail, as the Kohn-Sham levels are misaligned. In the weak bias regime, XC corrections to the current are missed by the standard methodology. For finite bias, a new methodology for performing calculations can be rigorously derived using an extension of time-dependent current density functional theory from the Schroedinger equation to a Master equation.Comment: topical review, 28 pages, updated version with some revision

    Self-Similar Interpolation in Quantum Mechanics

    Full text link
    An approach is developed for constructing simple analytical formulae accurately approximating solutions to eigenvalue problems of quantum mechanics. This approach is based on self-similar approximation theory. In order to derive interpolation formulae valid in the whole range of parameters of considered physical quantities, the self-similar renormalization procedure is complimented here by boundary conditions which define control functions guaranteeing correct asymptotic behaviour in the vicinity of boundary points. To emphasize the generality of the approach, it is illustrated by different problems that are typical for quantum mechanics, such as anharmonic oscillators, double-well potentials, and quasiresonance models with quasistationary states. In addition, the nonlinear Schr\"odinger equation is considered, for which both eigenvalues and wave functions are constructed.Comment: 1 file, 30 pages, RevTex, no figure

    The non-equilibrium phase transition of the pair-contact process with diffusion

    Full text link
    The pair-contact process 2A->3A, 2A->0 with diffusion of individual particles is a simple branching-annihilation processes which exhibits a phase transition from an active into an absorbing phase with an unusual type of critical behaviour which had not been seen before. Although the model has attracted considerable interest during the past few years it is not yet clear how its critical behaviour can be characterized and to what extent the diffusive pair-contact process represents an independent universality class. Recent research is reviewed and some standing open questions are outlined.Comment: Latexe2e, 53 pp, with IOP macros, some details adde

    Bioheterojunction Effect on Fluorescence Origin and Efficiency Improvement of Firefly Chromophores

    Full text link
    We propose the heterojunction effect in the analysis of the fluorescence mechanism of the firefly chromophore. Following this analysis, and with respect to the HOMO-LUMO gap alignment between the chromophore's functional fragments, three main heterojunction types (I, II, and I*) are identified. Time-dependent density-functional theory optical absorption calculations for the firefly chromophore show that the strongest excitation appears in the deprotonated anion state of the keto form. This can be explained by its high HOMO-LUMO overlap due to strong bio-heterojunction confinement. It is also found that the nitrogen atom in the thiazolyl rings, due to its larger electronegativity, plays a key role in the emission process, its importance growing when HOMO and LUMO overlap at its location. This principle is applied to enhance the chromophore's fluorescence efficiency and to guide the functionalization of molecular optoelectronic devices.Comment: 7 pages, 6 figure
    corecore