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ABSTRACT 

There are few data considering human genetics as an important risk factor for birth 

abnormalities related to ZIKV infection during pregnancy, even though sub-Saharan African 

populations are apparently more resistant to CZS as compared to populations in the Americas. 

We hypothesized that single nucleotide variants (SNVs), especially in innate immune genes, 

could make some populations more susceptible to Zika congenital complications than others. 

Differences in the SNV frequencies among continental populations provide great potential for 

Machine Learning techniques. We explored a key immune genomic gradient between 

individuals from Africa, Asia and Latin America, working with complex signatures, using 297 

SNVs. We employed a two-step approach. In the first step, decision trees (DTs) were used to 

extract the most discriminating SNVs among populations. In the second step, machine learning 

algorithms were used to evaluate the quality of the SNV pool identified in step one for 

discriminating between individuals from sub-Saharan African and Latin-American populations. 

Our results suggest that 10 SNVs from 10 genes (CLEC4M, CD58, OAS2, CD80, VEPH1, CTLA4, 

CD274, CD209, PLAAT4, CREB3L1) were able to discriminate sub-Saharan Africans from Latin 

American populations using only immune genome data, with an accuracy close to 100%. 

Moreover, we found that these SNVs form a genome gradient across the three main continental 

populations. These SNVs are important elements of the innate immune system and in the 

response against viruses. Our data support the Human Immune Genome Complex Gradient 

hypothesis as a new theory that may help to explain the CZS catastrophe in Brazil. 

 

INTRODUCTION 

Zika virus (ZIKV), an arbovirus that belongs to the Flaviviridae family, was initially 

isolated from a captive rhesus monkey in Uganda in 1947 (Dick et al. 1952; Dick et al. 1953). The 

most common reported ZIKV infection symptoms in humans are rash, fever, arthralgia, and 



conjunctivitis. Most patients experience only a mild and transitory illness, but severe neurologic 

complications have been described (Loos et al. 2014). ZIKV is predominantly transmitted by 

Aedes sp. mosquito species such as A. aegypti and A. albopictus, which also are vectors of 

dengue virus (DENV) and chikungunya virus (CHIKV). Laboratory diagnosis of ZIKV infection is 

based on IgG/IgM ELISA, and detection of viral RNA in the blood, serum or other body fluids 

(amniotic fluid, saliva, urine, semen), and/or viral isolation (Bachiller-Luque et al. 2016; Duffy et 

al. 2009). However, because of the co-circulation of arboviruses such as DENV and CHIKV, and 

cross-reactive antibodies, ZIKV infections are sometime missed or incorrectly diagnosed (Oehler 

et al. 2014). 

In 2007, the first Zika epidemic occurred on the Yap Islands, an island chain in the 

Federated States of Micronesia. In 2013, a new epidemic started in French Polynesia (Musso et 

al. 2014), when it was observed a 20-fol increase in the incidence of Guillain-Barré syndrome 

(GBS), an immune mediated ascending flaccid paralysis (Oehler et al. 2014). In Brazil, ZIKV was 

first identified in 2015 in the State of Bahia in patients with clinical symptoms similar to those of 

dengue fever (Campos et al. 2015; Pinto Junior et al. 2015). These initial cases in Bahia were 

followed by epidemics in other northeastern states of Brazil. In the second half of 2015, there 

was a significant increase of newborns with microcephaly and other birth abnormalities in 

Northeastern Brazil, with 2,366 cases of microcephaly and other birth defects being reported by 

December of 2016, particularly in the State of Pernambuco (Schuler-Faccini et al. 2016). In Latin 

America, 1.6 million cases of ZIKV infections occurred between 2015 and 2016, followed by 

thousands of cases of microcephaly (WHO 2017; Oliveira et al. 2017). 

The dramatic increase in the incidence of microcephaly concomitant with the ZIKV 

epidemic in Brazil alerted the scientific community to a potential causal association, leading the 

Brazilian Ministry of Health to declare the ZIKV epidemic to be a “national public health 

emergency”; and then, the World Health Organization (WHO) to declarate it to be a "public 



health emergency of international concern" (Albuquerque et al. 2018). Retrospective 

observational studies reinforced the suspicion of a causal of ZIKV infection with microcephaly 

(Araújo et al. 2018; Brasil et al. 2016; Cauchemez et al. 2016), and with non-congenital 

neuroinflammatory diseases, such GBS, encephalitis and myelitis (Cao-Lormeau et al. 2016; 

Parra et al. 2016; Styczynski et al. 2017; Salinas et al. 2017; Mehta et al. 2018). Several reports 

where instrumental in establishing the association between ZIKV and microcephaly. Mlakar et 

al. (2016) identified ZIKV in the brain tissue of a severe microcephalic stillbirth whose mother 

had been infected with ZIKV in Brazil. This report was one of first to propose the possibility of 

an association between ZIKV and microcephaly, which was later confirmed by case-control 

studies with Brazilian newborns (MERG Group 2016; Cordeiro et al. 2016; Brasil et al. 2016; 

Krow-Lucal et al. 2018). 

Based on this literature, microcephaly combined with other fetal abnormalities 

associated with congenital ZIKV infection, in addition to microcephaly, have earned their own 

name: Congenital Zika Syndrome (CZS) (Miranda-Filho et al. 2016). Since then, CZS has been 

reported at variable frequencies in different investigations of pregnant women infected with 

ZIKV. Honein et al. (2017), studying 442 pregnancies with laboratory evidence of recent ZIKV 

infection in US territories, reported a 6% incidence of CZS including 18 cases of microcephaly 

(4%). In the case-control study by Hoen et al. (2018), in the French territories in the Americas, 

7% of fetuses and infants of 527 ZIKV-PCR positive women were born with CZS, among which 32 

(6%) had microcephaly. In turn, Brasil et al. (2016) had reported a very high frequency of 42% of 

CZS in infants born to 117 ZIKV-PCR positive woman from Rio de Janeiro in Southeastern Brazil, 

among which there were four babies with microcephaly (3.4%). It is noteworthy that this 

Brazilian case-control study applied an expanded CZS criterion, including children with tenuous 

and unspecific findings on MRI scans (Brasil et al. 2016). 



These variations may be related, in part, to differences in the CZS/microcephaly 

diagnostic criteria, but variation in CZS risk could also explain these disparities. Furthermore, 

striking differences in incidence of microcephaly were observed in different regions of Brazil, the 

country with the most extensive ZIKV epidemic. More than 75% of the Brazilian cases of 

microcephaly were from the Northeast region, where the monthly incidence reached many 

times the incidence of the Southern population: 50 versus 1.5 per 10,000 live births (Oliveira et 

al. 2017). Accordingly, Barbeito-Andrés et al. (2018) suggested that cofactors, such as ZIKV 

strains, and environmental and human genetic variations, could potentially explain the 

geographic clustering of microcephaly in the Northeast of Brazil. They further showed an 

association between the incidence of microcephaly and the states with the highest prevalence 

of undernutrition (Barbeito-Andrés et al. 2020). 

Studies in mice identified highly susceptible as well as resistant mouse strains as relevant 

models to access the mechanisms of ZIKV infection. Manet et al. (2020) showed that 

susceptibility was driven by multiple loci with small individual effects, and was independent of 

the Oas1b gene, which functions in the innate antiviral immunity pathway. Another recent 

animal study showed differences in inoculation routes influencing the rate of infection and viral 

load in mouse embryos (Duggal et al. 2018). These models reflect the role of host diversity on 

ZIKV infection outcome and highlight the need for additional studies in humans to address the 

role of different cofactors involved in CZS (Barbeito-Andrés et al. 2018). Genetic data related to 

human CZS are rare, in part due to difficulties in developing well-controlled case-control studies. 

Nonetheless, one revealing study found that discordant CZS twins have differential in vitro viral 

susceptibility of neural progenitor cells, expressing MTOR and WNT regulatory genes differently; 

both genes are part of key pathways in programming neural embryology (Caires-Junior et al. 

2018). Case-control studies have shown the influence of maternal adenocyclase (ADCY) SNVs 

(Rossi et al. 2019) and of TOL3 (maternal)/TNFα (infants) SNVs (Santos et al. 2019) in 

susceptibility of CZS and/or microcephaly. In turn, Azamor et al. (2018) indicated that a Type III 



interferon maternal SNV promotes protection against the development of CZS. Taken together, 

these data indicate that host genetic background related to antiviral responses, especially 

against arboviruses, may affect the outcome of fetal ZIKV infection. 

Human genetic risk factors could be key elements in ZIKV-mother and ZIKV-baby 

interactions, as they might influence the vertical transmission of the virus, cell and tissue 

damage, and consequent congenital abnormalities associated with the ZIKV infection. However, 

the frequency of relevant alleles may not be uniformly distributed across global populations. In 

fact, population genetic differences likely arose during the evolution that occurred during the 

dispersion of Homo sapiens from Africa to other continents roughly 100,000 years ago. This 

dispersion led to selection of a series of genetic adaptations under different climatic and other 

environmental conditions, including food sources and local pathogens, leading to population 

differentiation. This differentiation, in turn, led to continuous gradients of genomic variants 

(Serre and Paabo 2004), including gradients of various resistance/susceptibility alleles for 

infectious diseases (Karlsson et al. 2014). We hypothesize that alleles at a number of loci in genes 

that influence immunity, interacting in a complex manner, may drive differences in the balance 

between resistance and susceptibility to CZS, forming a geographic genomic gradient of host 

susceptibility. 

To test our hypothesis, we applied a methodologic approach that is pioneering in both 

method and concept. We developed a new tool based on SNV allele frequencies in several genes 

involved in immune function, evaluated together in a complex manner by machine learning 

techniques. Based on data from previous outbreaks of ZIKV, we hypothesized that sub-Saharan 

Africans were resistant to CZS and that Latin Americans were susceptible, these are the two 

populations that represent the theoretical extremes for risk of CZS epidemics. Our dual decision 

tree (DT)/trained machine learning models were able to distinguish individuals from Africa and 

the Americas with an accuracy of 98% using only ten SNVs from ten genes involved in immune 



functions (CLEC4M / CD299, CD58, OAS2, CD80, VEPH1, CTLA4, CD274, CD209, PLAAT4, 

CREB3L1). Here, we present the Human Immune Genome Complex Gradient Theory as potential 

explanation of why the CZS catastrophe occurred in Brazil. 

 

RESULTS 

We developed five dual DT/machine learning classification pipelines (e.g. DT/SVM 

linear) exclusively with immune SNVs in genes involved in immune functions, aiming to detect a 

potential allele frequency gradient across sub-Saharan African, East Asian, and Latin American 

populations, and to determine if it was consistent with the CZS risks in ZIKV-infected women 

among these continents. The analysis of the SNVs (hypothetical candidates features) resulted in 

a set of ten SNVs from ten genes involved in immune functions: CLEC4M/CD299, CD58, OAS2, 

CD80, VEPH1, CTLA4, CD274, CD209, PLAAT4, and CREB3L1, which together displayed high 

power to discriminate between sub-Saharan Africans and Latin Americans. This selected SNV set 

provided high accuracy with all five dual DT/ML techniques (Fig. 1). The confusion matrices, ROC 

Curves, and other metrics suggest that this immune response SNV set is indeed a reliable 

discriminator of the two populations, which are theoretically at the extremes of risk for CZS. 

 



Fig. 1. Statistical metrics (confusion matrix, classification metrics, ROC curve) for all five tested dual DT/ML 

genome approaches for immune genome discrimination between sub-Saharan African and Latin American 

populations: DT/Linear regression, DT/KNN, DT/DT, DT/SVM Linear, DT/SVM Kernel. 

 

Figure 2 displays our Human Immune Genome Complex Gradient Theory as an 

infographic. Briefly, our dual DT/trained machine learning models, using the immune genome 

complex approach, revealed a unique and robust tool comprising ten SNVs acting in an 

integrated manner to discriminate sub-Saharan African and Latin American populations (Figure 

2-A). For six of the ten SNVs, VEPH1/rs3911403-T, CREB3L1/rs7127254-C, PLAAT4/rs4963271-A, 

CD58/rs1335531-G, CD80/rs2629396-G, and OAS2/rs15895-A, the reference allele increased in 

frequency from sub-Saharan Africa to Latin America (Figure 2-B). In contrast, 

CLEC4M/rs12610506-G, CD274/rs4143815-G, and CD209/rs4804801-T decreased in frequency 

from sub-Saharan Africa to Latin America, while CTLA4/rs41265961-G was virtually constant. In 

addition to differences in host genetic variation at these ten SNPs, the circulating ZIKV lineage 

differed by continent (Figure 2-C) (Liu et al. 2019). Similarly, risk estimates of microcephaly in 

infants born to women infected with ZIKV during pregnancy differed by continent (Figure 2-D) 

(Cauchemez et al. 2016; Oliveira et al. 2017). 



 

FIG. 2. Machine learning approach and genetic CZS/microcephaly hypothesis overview. A) Genotype 

based Support Vector Machine (SVM) approach (second round) used for sub-Saharan African/Latin 

American population discrimination using only immune gene data pre-selected by DT, with ten SNVs and 

the hyperplane separation stage. B) Reference allele frequencies of the ten selected SNV/gene candidates 

for CZS phenotype predisposition in South America, showing allele frequency differences between sub-

Saharan Africans and Latin Americans. C) ZIKV lineage circulating in each continent (*Asian Lineages are 

classified according to amino acid pattern at three positions: 139 in prM, 982 in NS1 and 2634 in NS5) (Liu 

et al. 2019). D) Probability of microcephaly in babies born to ZIKV-infected mothers during epidemics on 

the three continents (1Cauchemez et al. 2016; 2Oliveira et al. 2017). 

 

Allele frequencies of the ten selected SNVs are shown for each 1000 Genomes 

continental (Table 1). 

 



 

Table 1. Allele frequencies of ten selected SNVs in the DT/SVM complex immune genome tool among sub-

Saharan African, East Asian, and Latin American populations from the 1000 Genomes. 

rsID Gene 
Chr:Position  

(HG38) Allelesα 

sub-Saharan 
Africans 

(661) 

East 
Asians 
(347) 

Latin 
Americans 

(489) 

rs1335531 CD58 1:116572755  G/C 0.10 0.92 0.76 

rs41265961 CTLA4 2:203871138  G/A 0.99 1.00 0.99 

rs2629396 CD80 3:119530120 G/T 0.06 0.37 0.43 

rs3911403 VEPH1 3:157444338 T/A 0.47 0.80 0.92 

rs4143815 CD274 9:5468257 G/C 0.98 0.42 0.57 

rs7127254 CREB3L1 11:46286998 C/T 0.29 0.85 0.83 

rs4963271 PLAAT4 11:63537712 A/G 0.23 0.72 0.83 

rs15895 OAS2 12:113010483  A/G 0.01 0.00 0.22 

rs4804801 CD209 19:7742596 T/A 0.67 0.40 0.11 

rs12610506 CLEC4M/CD299 19:7768185 G/A 0.98 0.84 0.58 
αThe reference allele is listed first followed by the non-reference allele. All population allele frequencies 

are provided for the reference allele 

 

DISCUSSION 

CZS epidemiology 

The CZS epidemic is recent and peaked in an epidemiological crisis in Brazil in 2015, 

becoming a more widespread geographic problem in 2016. Several reports were important to 

establish the causal link between ZIKV and microcephaly and other congenital malformations, 

which together became known as CZS. In recent CZS literature, there have been significant 

advances in our understanding of ZIKV epidemiology and evolution. This report presents a 

hypothesis to explain the high level of ZIKV teratovirulence and the high incidence of CZS cases 

in South America, especially in Brazil. 

As of January 2017, 2,635 cases of central nervous system malformation potentially 

associated with ZIKV had been reported around the world, among which 2,366 were from Brazil 

and 78 were from Colombia (WHO 2017). Furthermore, although ZIKV might be widespread 

across Africa, reports of CZS cases in Africa are rare (WHO 2017; Hill et al. 2019). This dichotomy 



is not likely to be the consequence of differences in rate of ZIKV infection among pregnant 

women from different epidemic regions. A meta-analysis by Coelho et al. (2017), including 

observational studies, found a high inter-study variability in the frequencies of microcephaly in 

infants born to ZIKV-infected women, ranging from zero to 14%. This variability may be due to 

differences in the case definition of ZIKV infection and CZS between studies. However, some 

population-based estimates indicate that the risk of microcephaly may be different among ZIKV-

infected pregnant women from different populations (Pacheco et al. 2016; Cauchemez et al. 

2016; Oliveira et al. 2017; Barbeito-Andrés et al. 2020). 

During the ZIKV outbreak in French Polynesia (2013-2014), only eight cases of 

microcephaly occurred, resulting in a risk of 0.95% among women infected in the first trimester 

of pregnancy (Cauchemez et al. 2016). Impressively, 1,950 cases of infection-related 

microcephaly were confirmed after ZIKV epidemics in Brazil (2015-2016), reaching an incidence 

of 4.5% in babies born to infected woman (Oliveira et al. 2017). It is important to highlight that, 

in the Brazilian epidemics (2015-2016), 31,000 ZIKV suspected cases were reported to the 

surveillance systems, but it is estimated that 1,673,272 persons were infected with ZIKV (Oliveira 

et al. 2017). Similarly, in the Polynesian epidemic 31,000 persons were estimated to have been 

infected, but only 8,000 cases of ZIKV infections were officially reported (Cauchemez et al. 2016). 

Although we cannot account in our analysis for the under-reporting in our consideration of the 

incidence of CZS, there were strikingly different risks even within Brazil, the country with the 

most extensive ZIKV epidemics. More than 75% of the Brazilian cases of microcephaly were from 

the Northeast region, where the monthly incidence reached several times the incidence of 

Southern population: 50 versus 1.5 per 10,000 live births (Oliveira et al. 2017). In turn, an 

ecological study at a municipality level across Brazil was unable to correlate the incidence of 

microcephaly with the incidence of ZIKV infection, but this showed a correlation with poverty 

index. These data suggested that ZIKV might not be, alone, be responsible for the unusual 

pattern of microcephaly in Brazil that clustered in the Northeast region (Campos et al. 2018). 



Some hypotheses have emerged to explain the asymmetrical distribution of CZS risk and 

ZIKV neurovirulence. The evolution of ZIKV strains, vector competence of mosquitoes across 

continents, climatic conditions, environmental toxins, and nutritional factors deserve to be 

considered. In turn, immunological and genetic variability influencing the 

susceptibility/resistance status of the human host is also worthy of concern, especially in ZIKV 

naïve areas where DENV has been hyper-endemic, as pre-infection with DENV might lead to an 

antibody enhancement response that induces the severest clinical outcomes (Zhong-Yu et al. 

2019; Barbeito-Andrés et al. 2020). To date, there is a single ZIKV serotype, but two major viral 

lineages (African and Asian) have been identified through phylogenetic analyses. The Asian 

lineage can be divided into two subclades (Asian and Contemporary American), which are 

responsible for the recent outbreaks and are associated with clinical severity in the Pacific region 

and the Americas, respectively (Liu et al. 2019). Some experimental studies based on reverse 

genetics have shown that ZIKV undergoes genetic changes over time and that amino acid 

mutation patterns in ZIKV surface proteins may have contributed to the epidemic waves that 

occurred in Micronesia (2007), French Polynesia (2013-2014), and South America (2015-2016) 

(Faria et al. 2017; Metsky et al. 2017). Among the genetic changes, three important amino acid 

mutations, respectively, in  prM S139N (substitution of Serine to Asparagine at position 139), 

NS1 A928V (substitution of Alanine to Valine), and NS5 M/T2634V (substitution of Methionine 

or Threonine to Valine), have been related to a more neurovirulent and pathogenic ZIKV strain 

spreading from Asia to the Americas (Zhong-Yu et al. 2019) (Fig. 1). An increase in neurovirulence 

and pathogenic capacity of ZIKV as it spread to the Americas may have been a contributing 

factor, together with the host genetic factors that we propose, to the CZS catastrophe in Brazil. 

Among environmental cofactors, contaminants in the water supplies, pre-natal vaccines, 

and the use of alcohol, cigarettes, or drugs during pregnancy were all considered as potential 

contributing factors to the Brazilian cluster of microcephaly at the beginning of epidemic. In the 

first case-control study proving the association of microcephaly with ZIKV in Pernambuco (OR= 



73; CI 13-∞), neither vaccination during pregnancy or use of drugs, alcohol, or larvicides, were 

associated with microcephaly (Araújo et al. 2018). However, smoking was found to be associated 

with microcephaly (Araújo et al. 2018). Similarly, an ecological study found no correlation 

between the use of the larvicide pyriproxyfen in stored water and microcephaly among 

municipalities of the metropolitan region of Pernambuco, the epicenter of the Brazilian 

microcephaly epidemic (Albuquerque et al. 2016). Interestingly, experiments in mouse models 

suggested that maternal diet protein restriction (Barbeito-Andrés et al. 2020) and exposure to 

cyanobacterial saxitoxin through water intake (Pedrosa et al. 2019) exacerbate brain 

malformations induced by ZIKV. In fact, CZS may have multiple environmental cofactors and may 

be influenced by ZIKV genetic factors, but the constellation of alleles of host genes involved in 

immune functions may also be important predictor of the occurrence and severity of CZS. 

 

CZS genetics and the hypothetical Human Immune Genome Complex Gradient 

Genetic data pertinent to CZS are rare due the difficulties in recruiting human CZS 

cohorts into well-controlled CZS case-control studies. Developing such studies is particularly 

challenging given the difficulties associated with diagnostic certainty of congenital ZIKV-

infection as well as ascertaining the embryonic or fetal period of infection. In fact, not a single 

well-controlled genomic study was conducted with the hundreds of children with CZS during the 

Brazilian epidemics. However, genetic studies using animal models can shed light on the role of 

different cofactors involved in CZS.  IFN I receptor gene (IfnarI) knockout mice and the use of 

anti-IFNAR antibody in vivo showed that CZS susceptibility was driven by multiple loci with small 

individual effects and independent of the Oas1b gene (Manet et al. 2020). These results indicate 

that novel experimental models of infection can help to address the role of different cofactors 

and genes involved in CZS. 



Given the paucity of genetic data from human ZIKV case-control association studies, and 

combined with evidence from animal models demonstrating the impact of host genetic factors 

on the development of CZS, we are presenting a new theory to help explain the Brazilian CZS 

catastrophe of 2015-2016: the Human Immune Genome Complex Gradient hypothesis. Our 

analysis of global allele frequency data from 297 immune response genes across three 

continental populations suggest that, at the population level, sub-Saharan Africans are quite 

resistant to CZS, East Asians are moderately susceptible, and Latin Americans are highly 

susceptible to CZS. The rationale is based on ten key SNPs in immune functional genes, whose 

alleles collectively discriminate among three populations, creating a combined signature for 

each, and forming a hypothetical geographical gradient for risk of CZS. The genes exhibiting 

these SNPs (CLEC4M / CD299, CD58, OAS2, CD80, VEPH1, CTLA4, CD274, CD209, PLAAT4, 

CREB3L1) are important for function of innate immune system and for anti-viral response. We 

posit that, in a complex manner, the constellation of SNVs in these genes can potentially 

influence ZIKV vertical transmission, tissue damage, and congenital abnormalities; and 

consequently, the outcome of ZIKV-mother and ZIKV-fetus interactions.  

We advocate that an immune genome gradient is probably developed as consequence 

of host-pathogen co-evolution during H. sapiens dispersion across continents thousands of years 

ago. Modern humans appeared in Africa about 200,000 years ago, dispersed to Asia 

approximately 100,000 years ago, and subsequently colonized the rest of the world in a series 

of migratory events. During these events, humans encountered a wide range of different 

environmental conditions, such as climate, food availability, and local pathogens (Fumagalli et 

al. 2011). These environmental differences probably selected for genetic adaptations and 

resulted in the establishment of continuous genome gradients of allele frequencies across 

populations (Serre and Paabo 2004; Marian 2009). 



For infectious diseases, natural selection in human populations is evident for pathogens 

with a long-standing relationship with H. sapiens, including those that cause malaria, smallpox, 

cholera, tuberculosis, and leprosy (Karlsson et al. 2014). The timing, strength and direction of 

selection (that is, positive, negative, or balancing) shape the patterns of genomic variation 

(Karlsson et al. 2014). Hence, mutations in immune-inflammatory response genes are good 

candidates for understanding why some populations are more susceptible to infections than 

others. For example, in models of human genome adaptations, approaches that consider a single 

pathogen have provided examples of host evolution driven by the influence of that pathogen. 

The case of anemia falciform is a classic example. In heterozygosity, the sickle cell allele confers 

sickle cell trait and protection against Falciparum malaria, while in homozygotes it is life 

threatening; and so a sickle cell trait occurs at a high frequency in malaria-rich regions, such as 

Africa, and at a low frequency outside of these regions (Kwiatkowski 2005). Another inherited 

red blood cell disorder that is associated with malaria resistance is caused by glucose-6-

phosphate dehydrogenase (G6PD) deficiency, which also coincides with the geographical 

distribution of malaria (Tishkoff et al. 2001). 

Many other instances of population level differences in infectious disease susceptibility 

have been described. For example, MHC complex (HLA) diversity confers differential resistance 

to a wide range of pathogens (Buhler and Sanchez-Mazas 2011), and has been demonstrated to 

impact the clinical course of infection for a large number of viral infectious diseases including 

dengue fever (Stephens et al. 2010), yellow fever (Co et al. 2002), and hepatitis C Virus (HCV) 

(Kuniholm et al. 2011). Genetic variation in toll like receptor genes suggests that Europeans 

exhibit a reduced TLR1-mediated response compared to other global populations (Barreiro et 

al. 2009). Another example, African Americans are more likely than Caucasians to carry cytokine 

variants that up-regulate pro-inflammatory responses (Ness et al. 2004). This may predispose 

individuals of African ancestry to higher rates of inflammatory diseases (Ness et al. 2004). 

Similarly, Pennington et al. (2009) suggested that African populations from tropical Africa have 



a more robust inflammatory response compared to Europeans and East Asians. They 

hypothesized that this robust response was the result of variation in immune response genes 

that evolved in response to local pathogen exposure: parasites with low virulence and long life-

spans such as those that cause malaria in Africa versus high-virulence pathogens such as those 

that cause smallpox and cause measles in Europe and East Asia. Taken together, these are 

emblematic examples demonstrating that human genetic variation contributes to differences in 

response to infections, and they support our hypothesis that a complex genome gradient has 

contributed to CZS phenotype distribution across global populations.  

There have been studies that examined the impact of immune genetic factors impact on 

CZS. Hamel et al. (2015) carried out an in vitro gene expression study on ZIKV infection in 

epidermal cells, and demonstrated that receptors such as DC-SIGN, TIM-1, TIM-4, AXL, and TIROL 

are important elements for ZIKV entry into cells. They observed significant reduction in the 

percentage of ZIKV-infected cells when the AXL receptor is blocked by antibodies, and similarly 

for DENV-infected cells. The ZIKV-infected fibroblasts presented expression of anti-viral 

response genes, cell receptors genes, and immunity genes. Up-regulation of many genes 

involved in immune response has also already been observed in models of DENV infection, such 

as FAAD, IFN, MYD88 (Gomes et al. 2010), OAS, PYCARD, TNF (Nascimento et al. 2009), and STAT 

(Warke et al. 2003), supporting the idea of common key elements for both flaviviruses. In 

humans, case-control immune genome studies have shown the influence of maternal 

adenocyclase SNV (Rossi et al. 2018) and TOL3 (maternal)/TNFα (infants) (Santos et al. 2019) on 

CZS susceptibility or severe microcephaly. On the other hand, Azamor et al. (2018) indicated that 

a maternal IFN III SNV promotes protection against the development of CZS. However, to date, 

there are no reports regarding influence of a combination of genotypes at multiple loci/genes 

on the risk for CZS. 

 



The immune genome SNV tool 

Our dual DT/ML immune genome approach showed that allele frequencies of ten SNPs 

of ten genes are consistent with the risk of microcephaly across Africa, French Polynesia, and 

Brazil, and may have contributed to the Brazilian CZS epidemics. All of these genes (CLEC4M, 

CD58, OAS2, CD80, VEPH1, CTLA4, CD274, CD209, PLAAT4, CREB3L1) are involved with innate 

immune response, virus cycle, or anti-virus response. Seven of those polymorphisms are genic 

SNPs (six are “transcript variants” and one is “stop codon lost”), rather than in non-genic 

sequence. Our results agree with Fumagalli et al. (2011) who found a significant enrichment of 

genic SNPs, in particular non-synonymous SNPs vs intergenic SNPs, involved in local adaptation 

to pathogenic exposure across human populations. As Karlsson et al. (2014) pointed out that 

much adaptive evolution probably occurred in regulatory, non-coding regions, but our results 

indicate that genic variations may be more frequent in the human adaptive response to 

pathogenic exposure. It is also important to point out that most studies identifying host genetic 

resistance factors to pathogenic infection show one or a few SNVs functioning in an individual 

manner. Our findings suggest that genetic variations in many genes may work in an integrated 

and coordinated way, thus indicating polygenic selection. 

It is noteworthy to state that our DT/ML selected-SNPs comprise a broad functional 

panel. Type II C-type lectin (CLEC4C) is a transmembrane protein expressed selectively on 

plasmacytoid dendritic cells. The triggering of the extra-cellular C-terminal C-type carbohydrate 

recognition region of CLEC4C regulates the secretion of proinflammatory cytokines and type I 

interferons (IFNs) (Lim et al. 2016), directly related with the oligoadenylate synthetase (OAS) 

family. OAS proteins detect foreign RNA by oligoadenylate cytosolic PAMP (Pathogen Associated 

Molecular Pattern), which leads to 2-5-oligoadenylate synthesis, which then acts as an 

intracellular second messengers to activate latent ribonuclease L (RNase L). This activation 

promotes indiscriminate cleavage of both host and viral RNA, and the production of additional 



PAMPs, which reinforces the innate immune response (Schneider et al. 2014, Chakrabarti et al. 

(2011). Upon stimulation, Toll-Like Receptors (TLRs) 7, 8, and 9 interact with the TIR domain of 

MyD88 to recruit signaling molecules Interleukin-1 receptor-associated kinases (IRAK4/1/2) (He 

et al. 2013). This recruitment leads to IkB degradation and thereby contributes to the activation 

of NF-kB and MAPK signaling pathways to induce secretion of inflammatory cytokines, IFN type 

I, chemokines, and antimicrobial peptides, and other innate immune response genes (He et al. 

2013). Some of these genes have been previously related with dengue fever, such as CLEC4M, 

OAS2,3, VEPH1 (Davi et al. 2019), CD209 (Tassaneetrithep et al. 2003), and Zika infection, such 

as CD80, TLR7 (Hamel et al. 2015). 

It is important to consider that the individual humans are “complex systems” programed 

by billions of DNA base pairs. During evolution, DNA replication errors resulted in many 

mutations across generations, and some favorable mutations became retained in the genome 

as consequence of natural selection, contributing to population diversity. Here, our principal 

message regarding host influences on CZS, beyond the immune genome gradient itself, is the 

complexity of inter-individual and inter-population genetic backgrounds. We are proposing a 

new theory to help explain the CZS catastrophe in Brazil. The hypothetical “human immune 

genome complex gradient” is based on the host genetic population gene diversity produced by 

human natural history and evolution across the world. Going forward, we propose that the 

complexity of genetic data should be deeply analyzed using the most robust available 

computational tools and a much broader immune genome SNV panel. Furthermore, ZIKV genetic 

factors, environmental factors, and population immune history are essential in the modeling the 

complex clinical phenotype of CZS Brazilian phenomenon. 

 

METHODS 



In order to examine the CZS phenomenon in Brazil from an evolutionary perspective, 

we created a theoretical population immune genome in silico analysis. This method used a dual 

computational approach: (i) a Decision Tree (DT) to select SNVs (features) as good population 

discriminants and (ii) other machine learning models to improve the discrimination quality of 

the selected SNV cluster. We assume theoretical (pooled, probably admixed) populations in this 

approach. We consider sub-Saharan Africans, who evolved (probably) together with ZIKV, to be 

naturally resistant; and we consider Latin Americans to be susceptible due to their historical 

ZIKV naïve condition and the recent epidemics of CZS. As such, these two populations represent 

the theoretical genetic extremes of CZS risk. In addition, we hypothesize that East Asians are 

moderately susceptible. 

Dataset characterization and preprocessing 

The dataset was composed of genotype data from The 1000 Genomes Project (2015), and 

included individuals from a mix of populations from three continents: the Americas, Africa, and 

Asia (https://www.internationalgenome.org). The American population consisted of Mexicans 

living in Los Angeles, United States (MXL), Puerto Ricans from Puerto Rico (PUR), Colombians 

from Medellin (CLM) and Peruvians from Lima (PEL). The East Asian population was comprised 

of Kinh from Ho Chi Minh City, Vietnam (KHV), Han Chinese from South China (CHS), Han Chinese 

from Beijing (CHB), Chinese Dai from Xishuangbanna (CDX), and Japanese from Tokyo (JPT). The 

African population was composed of Esan (ESN) and Yoruba (YRI) from Nigeria, Luhya from 

Webuye, Kenya (LWK), Gambian Mandinka (GWD), Mende from Sierra Leone (MSL), and 

descendants of Africans living in Barbados (ACB) and in the southwestern United States (ASW). 

From each population, we selected 297 innate immune system SNVs previously interrogated in 

a dengue genetic study (Davi et al. 2019). In total, the dataset comprised 297 attributes, 

corresponding to 297 target SNVs and 1497 individuals: 661 Africans, 347 East Asians, and 489 

Latin Americans. Dataset preprocessing was performed according to the following definitions: 



(i) Each SNV was evaluated considering both alleles as a single point of information; (ii) 

heterozygote information was homogenized (e.g. “A”/”C” and “C”/”A” were considered the 

same); (iii) missing data were assigned the value NN. All attributes were categorical, containing 

information about allelic pairs of each considered SNP - for example homozygotes such as AA, 

or heterozygotes such as AT. For each SNP, each pair of alleles received an integer code. For 

example, a given SNP containing allelic pairs AA, AT, and TT, was encoded as follows: AA = 1, AT 

= 2, and TT =3. This integer encoding was done independently for each SNP. 

 

Feature selection and classification 

Decision Trees (DT) (Utgoff 1989) were used in the first step to reduce the prior set containing 

297 SNVs to a smaller SNV dataset with a higher power for discrimination between sub-Saharan 

Africans and Latin Americans. This was done to take advantage of the DT characteristic to 

naturally select features that best discriminate classes, in this case distinct populations. In 

addition, DTs make it possible to quantify and rank the importance of each attribute, which is 

desirable for the subsequent biological analysis. Stratified 10-fold cross-validation was 

performed as part of the feature selection effort. In this process, the dataset was divided into 

ten parts of which nine were used as the training set and one part was used as the test set. This 

procedure was repeated ten times, so that each pattern appeared only once as part of the test 

set. Stratification occurred so that the proportion of individuals in each class in the training and 

test sets was similar to the proportion of the dataset as a whole. After completing the ten 

repetitions, the SNVs that were used by DT analysis in at least six of the ten repetitions were 

considered as potentially good population discriminators and were selected to be used in the 

second step by other classifier algorithms. 

As the second step, the selected SNVs were evaluated regarding their discrimination quality. 

Algorithms with wide acceptance in the literature were used: (i) logistic regression (LR) (Cox 



1966), (ii) method of k nearest neighbors (KNN) (Cover 1967) and (iii) support vector machines 

(Boser et al. 1992) with linear kernel (SVM-Linear) and with radial base function kernel (SVM-

RBF). Hence, we employed five dual DT/machine learning classification pipelines: DT/LR, 

DT/KNN, DT/DT, DT/SVM-Linear, DT/SVM-RBF. The selected SNV set was evaluated using 

holdout technique; accuracy and precision were calculated, and confusion matrixes and ROC-

Curves (correlation curve between Sensibility and 1-Specificity) for each model were generated. 
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