23 research outputs found

    Modulatory effect of N acetyl L cysteine on the HIV 1 multiplication in chronically and acutely infected cell lines

    No full text
    N-acetyl-L-cysteine(NAC) is known to antagonize the PMA- or cytokine-stimulated HIV-1 replication in latently and acutely infected monocytic and lymphocytic cell lines, and to reduce the virus multiplication in acutely infected, PHA-stimulated PBMC. We here report on the modulatory effects of NAC on the HIV-1 multiplication in both chronically and acutely infected lymphocytes that produce high virus levels independently from cytokine activation. In both cases, NAC doses of 0.12 and 0.25 mM decreased, whereas doses of 0.5–2 mM increased the infectious HIV-1 yield. At these concentrations, the modulatory effect of NAC on the HIV-1 multiplication paralleled that on cell proliferation, suggesting a close correlation between the two phenomena; in fact, under conditions where NAC could not modulate the cell growth, the drug also failed to modulate the HIV-1 multiplication. High NAC concentrations (4–16 mM), which were able to increase the proliferative rate of both chronically infected H9/IIIB and normal T lymphocytes, increased up to 6-fold the virus multiplication in H9/IIIB cells but were inhibitory to HIV-1 in acutely infected cells. This inhibition was due to the fact that, like dextran sulfate, NAC interfered with an early event in the virus growth cycle. The finding that high NAC doses were also capable of preventing syncytium formation in H9/IIIB and C8166 (or MT-4) cocultures further indicated an interference of the drug with receptor-binding-related event

    Evaluation of the toxicity of the dopaminergic neurotoxins MPTP and MPP+ in PC12 pheochromocytoma cells: binding and biological studies

    No full text
    This study was designed to investigate the toxicity of both MPTP and MPP+ using some simple cell systems, such as PC12 and C6 cultures, as models. Exposure of PC12 cells to 0.5 mM MPTP for 72 h resulted in a 50% cell loss with respect to the control cells, and clorgyline, a MAO-A inhibitor, antagonized this toxic effect. Higher concentrations of MPTP demonstrated only a weak cytostatic effect on C6 cells. Moreover, MPP+ showed a toxic effect which was 100 times more evident than MPTP toxicity in the PC12. We found a single, saturable class of [3H]MPP+ binding sites with a relatively high affinity both in PC12 and C6 cell lines. Moreover, the most susceptible cell line towards the toxic effects of both MPTP and MPP+, i.e. PC12, has the higher number of MPP+ binding sites. Our results suggest that MPTP can be toxic not only via MAO-B, but also via MAO-A activity and we propose PC12 as a model to study the intracellular mechanisms of MPTP and MPP+ toxicity

    Antimicrobial and antiviral activity of xylosyl methylthio adenosine, a naturally occurring analogue of methylthio adenosine from Doris verrucosa

    No full text
    Xylosyl-methylthio-adenosine, a naturally occurring analogue of 5'-deoxy-5'-methylthio-adenosine, has been postulated to play a protective role during egg development in the mollusc Doris verrucosa. However, in vitro tests showed that this analogue is devoid of activity against fungi, bacteria and viruses

    Poliovirus morphogenesis. I. Identification of 80S dissociable particles and evidence for the artefactual production of procapsids

    No full text
    The current model of poliovirus morphogenesis postulates a fundamental role for procapsid, 80S shells that, upon interaction with viral RNA and subsequent proteolytic cleavage, give rise to complete virus particles. Although 80S sedimenting particles can, indeed, be isolated from cytoplasmic extracts of infected cells, their physical properties differ from those reported for procapsids. Far from being stable structures, they can be dissociated by pH 8.5 and 0.1% sodium dodecyl sulfate into slower-sedimenting subunits. The reasons for this discrepancy were investigated, and two main modalities leading to the appearence of procapsids in vitro were identified. The first involves a temperature-mediated conversion of dissociable 80S particles into stable 80S procapsids, and the second involves the self-assembly of endogenous 14S subunits, also primed by an increase in the temperature of cytoplasmic extracts

    On the inhibitory effect of 2 amino 4,6 dichloropyrimidine on growth of vaccinia virus

    No full text
    2-Amino-4,6-dichloropyrimidine prevents maturation of Vaccinia virus. Proteins synthesized in the presence of the drug are not assembled into virions

    Pyocianine-induced DNA breakage and repair

    No full text

    Enhancement of the anti HIV 1 activity of ddADO by Coformicyn, EHNA and deaza EHNA derivatives

    No full text
    2',3'-dideoxyadenosine (ddAdo) and 2',3'-dideoxyinosine (ddIno) are potent and selective inhibitors of the replication of the human immunodeficiency virus type 1 (HIV1) in several cell culture systems. Equipotent in terms of antiviral activity, both compounds selectively inhibit the reverse transcription of HIV-1 by virtue of their conversion into ddATP. In human lymphoid cells ddAdo is converted to the active metabolite, ddATP, but it also undergoes rapid deamination, via adenosine deaminase, to form ddIno. ddIno, like ddAdo, gives rise to dideoxynucleotides of the dideoxy-adenylate series (ddAMP, ddADP and ddATP), as well as to IMP and to adenylate ribonucleotides. With the main object of blocking the deamination of ddAdo, we studied its anti-HIV-1 activity in the presence of different adenosine deaminase inhibitors, namely Coformycin (CF), 9-(erythro-2-hydroxy-3-nonyl) adenine (EHNA) and some deaza-EHNA derivatives. In contrast with reports on 2'-deoxycoformycin (Cooney et al., 1987), the adenosine deaminase inhibitors tested by us showed a significant increase in the antiviral activity of ddAdo, but not of ddIno. Enhancement was obtained with EHNA and CF concentrations up to 250 and >12,500 times lower than their respective maximum non toxic doses. In combination with EHNA or CF, ddAdo could be used at concentration up to ten times lower than those required to obtain the same degree of inhibition when ddAdo (or ddIno) was used alone. The use of EHNA or CF in combination with ddAdo at concentrations that inhibit the multiplication of HIV-1, allowed uninfected cells to maintain their normal multiplication rates. In fact, in combination experiments, cytotoxic effects were evident only with doses of EHNA, or CF and ddAdo 10 to 100 or more times higher than those required to inhibit HIV-1 significantly
    corecore