5,177 research outputs found

    Surface drag reduction and flow separation control in pelagic vertebrates, with implications for interpreting scale morphologies in fossil taxa

    No full text
    Living in water imposes severe constraints on the evolution of the vertebrate body. As a result of these constraints, numerous extant and extinct aquatic vertebrate groups evolved convergent osteological and soft-tissue adaptations. However, one important suite of adaptations is still poorly understood: dermal cover morphologies and how they influence surface fluid dynamics. This is especially true for fossil aquatic vertebrates where the soft tissue of the dermis is rarely preserved. Recent studies have suggested that the keeled scales of mosasaurids (pelagic lizards that lived during the Late Cretaceous) aided in surface frictional drag reduction in a manner analogous to the riblets on shark placoid scales. However, here we demonstrate that mosasaurid scales were over an order of magnitude too large to have this effect. More likely they increased the frictional drag of the body and may have played a role in controlling flow separation by acting as surface roughness that turbulated the boundary layer. Such a role could have reduced pressure drag and enhanced manoeuvrability. We caution those studying fossil aquatic vertebrates from positing the presence of surface drag reducing morphologies, because as we show herein, to be effective such features need to have a spacing of approximately 0.1?mm or less

    Capital Gains, Dividends, and Taxes: Market Reactions to Tax Changes

    Get PDF
    ABSTRACT The purpose of this study is to examine the effect of a capital gains tax reduction on the stock price of firms that have not historically paid a dividend. If markets are semi-strong-form efficient, one would expect that the market price would have already adjusted prior to the day the announcement was made, assuming no new information was included in the announcement. If markets have not already incorporated the information, there would be a possibility for abnormal returns from investing in the stocks on the date of the announcement. This paper studies the returns from companies prior to, and subsequent to, the capital gains tax reduction announcement date and compares the price changes of non-dividend paying companies to those of similar firms that have historically paid dividends. The a priori expectation of the study is that the majority of a change in prices will take place prior to the announcement date as investors anticipate the likelihood of passage by the Congress and the President

    The molecular determinants of small-molecule ligand binding at P2X receptors

    Get PDF
    P2X receptors are trimeric eukaryotic ATP-gated cation channels. Extracellular ATP - their physiological ligand - is released as a neurotransmitter and in conditions of cell damage such as inflammation, and substantial evidence implicates P2X receptors in diseases including neuropathic pain, cancer and arthritis. In 2009, the first P2X crystal structure, Danio rerio P2X4 in the apo- state, was published, and this was followed in 2012 by the ATP-bound structure. These structures transformed our understanding of the conformational changes induced by ATP binding and the mechanism of ligand specificity, and enabled homology modelling of mammalian P2X receptors for ligand docking and rational design of receptor modulators. P2X receptors are attractive drug targets, and a wide array of potent, subtype-selective modulators (mostly antagonists) have been developed. In 2016, crystal structures of human P2X3 in complex with the competitive antagonists TNP-ATP and A-317491, and Ailuropoda melanoleuca P2X7 in complex with a series of allosteric antagonists were published, giving fascinating insights into the mechanism of channel antagonism. In this article we not only summarize current understanding of small-molecule modulator binding at P2X receptors, but also use this information in combination with previously published structure-function data and molecular docking experiments, to hypothesise a role for the dorsal fin loop region in differential ATP potency, and describe novel, testable binding conformations for both the semi-selective synthetic P2X7 agonist 2’-(3’)-O-(4-benzoyl)benzoyl ATP (BzATP), and the P2X4-selective positive allosteric modulator ivermectin. We find that the distal benzoyl group of BzATP lies in close proximity to Lys-127, a residue previously implicated in BzATP binding to P2X7, potentially explaining the increased potency of BzATP at rat P2X7 receptors. Furthermore, to our knowledge, we present the first molecular docking of ivermectin to rat P2X4 receptors, illustrating a plausible binding conformation between the first and second transmembrane domains which not only tallies with previous mutagenesis studies, but would also likely have the effect of stabilizing the open channel structure, consistent with the mode of action of this positive allosteric modulator. From our docking simulations and analysis of sequence homology we propose a series of mutations likely to confer ivermectin sensitivity to human P2X1

    Comparative functional morphology indicates niche partitioning among sympatric marine reptiles

    Get PDF
    Mesozoic marine ecosystems were dominated by diverse lineages of aquatic tetrapods. For over 50 Ma in the Jurassic until the Early Cretaceous, plesiosaurians, ichthyosaurians and thalattosuchian crocodylomorphs coexisted at the top levels of trophic food webs. We created a functional dataset of continuous craniomandibular and dental characters known from neontological studies to be functionally significant in modern aquatic tetrapods. We analysed this dataset with multivariate ordination and inferential statistics to assess functional similarities and differences in the marine reptile faunas of two well-sampled Jurassic ecosystems deposited in the same seaway: the Oxford Clay Formation (OCF, Callovian–early Oxfordian, Middle–Late Jurassic) and the Kimmeridge Clay Formation (KCF, Kimmeridgian–Tithonian, Late Jurassic) of the UK. Lower jaw-based macroevolutionary trends are similar to those of tooth-based diversity studies. Closely related species cluster together, with minimal overlaps in the morphospace. Marine reptile lineages were characterized by the distinctive combinations of features, but we reveal multiple instances of morphofunctional convergence among different groups. We quantitatively corroborate previous observations that the ecosystems in the OCF and KCF were markedly distinct in faunal composition and structure. Morphofunctional differentiation may have enabled specialization and was an important factor facilitating the coexistence of diverse marine reptile assemblages in deep time

    The ecological diversification and evolution of Teleosauroidea (Crocodylomorpha, Thalattosuchia), with insights into their mandibular biomechanics

    Get PDF
    Throughout the Jurassic, a plethora of marine reptiles dominated ocean waters, including ichthyosaurs, plesiosaurs and thalattosuchian crocodylomorphs. These Jurassic ecosystems were characterized by high niche partitioning and spatial variation in dietary ecology. However, while the ecological diversity of many marine reptile lineages is well known, the overall ecological diversification of Teleosauroidea (one of the two major groups within thalattosuchian crocodylomorphs) has never been explored. Teleosauroids were previously deemed to have a morphologically conservative body plan; however, they were in actuality morphofunctionally more diverse than previously thought. Here we investigate the ecology and feeding specializations of teleosauroids, using morphological and functional cranio‐dental characteristics. We assembled the most comprehensive dataset to date of teleosauroid taxa (approximately 20 species) and ran a series of principal component analyses (PC) to categorize them into various feeding ecomorphotypes based on 17 dental characteristics (38 specimens) and 16 functionally significant mandibular characters (18 specimens). The results were examined in conjunction with a comprehensive thalattosuchian phylogeny (153 taxa and 502 characters) to evaluate macroevolutionary patterns and significant ecological shifts. Machimosaurids display a well‐developed ecological shift from: (1) slender, pointed tooth apices and an elongate gracile mandible; to (2) more robust, pointed teeth with a slightly deeper mandible; and finally, (3) rounded teeth and a deep‐set, shortened mandible with enlarged musculature. Overall, there is limited mandibular functional variability in teleosaurids and machimosaurids, despite differing cranial morphologies and habitat preferences in certain taxa. This suggests a narrow feeding ecological divide between teleosaurids and machimosaurids. Resource partitioning was primarily related to snout and skull length as well as habitat; only twice did teleosauroids manage to make a major evolutionary leap to feed distinctly differently, with only the derived machimosaurines successfully radiating into new feeding ecologies

    Sub-nanosecond signal propagation in anisotropy engineered nanomagnetic logic chains

    Get PDF
    Energy efficient nanomagnetic logic (NML) computing architectures propagate and process binary information by relying on dipolar field coupling to reorient closely-spaced nanoscale magnets. Signal propagation in nanomagnet chains of various sizes, shapes, and magnetic orientations has been previously characterized by static magnetic imaging experiments with low-speed adiabatic operation; however the mechanisms which determine the final state and their reproducibility over millions of cycles in high-speed operation (sub-ns time scale) have yet to be experimentally investigated. Monitoring NML operation at its ultimate intrinsic speed reveals features undetectable by conventional static imaging including individual nanomagnetic switching events and systematic error nucleation during signal propagation. Here, we present a new study of NML operation in a high speed regime at fast repetition rates. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic soft x-ray transmission microscopy after applying single nanosecond magnetic field pulses. Further, we use time-resolved magnetic photo-emission electron microscopy to evaluate the sub-nanosecond dipolar coupling signal propagation dynamics in optimized chains with 100 ps time resolution as they are cycled with nanosecond field pulses at a rate of 3 MHz. An intrinsic switching time of 100 ps per magnet is observed. These experiments, and accompanying macro-spin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability.Comment: Main article (22 pages, 4 figures), Supplementary info (11 pages, 5 sections

    Reappraisal of the thalattosuchian crocodylomorph record from the Middle-Upper Jurassic Rosso Ammonitico Veronese of northeastern Italy:Age calibration, new specimens and taphonomic biases

    Get PDF
    Despite their extremely rare and fragmentary record, aquatic crocodylomorphs from the Middle to Upper Jurassic (Bajocian-Tithonian) Rosso Ammonitico Veronese (RAV) of northeastern Italy have sparked interest since the late 18th century. Among marine reptiles, Thalattosuchia is by far one of the best represented groups from the RAV units, especially in the Middle Jurassic. Although some specimens have been the subject of multiple studies in recent times, most of them still lack precise stratigraphic assignment and taphonomic assessment, while others remain undescribed. Here we provide a comprehensive revision of the thalattosuchian record from the RAV, alongside the most up-to-date age determination, by means of calcareous nannofossils, when available. Three new metriorhynchoid specimens are described for the first time from the Middle Jurassic of Asiago Plateau (Vicenza province). While the taphonomy of the newly described specimens hampers any taxonomic attribution below superfamily/family level, all three were confidently assigned to a precise interval between the upper Bajocian and the upper Bathonian. This revised record has major paleobiogeographical implications: the new specimens confirm an early origin and distribution of Metriorhynchoidea in the Tethys area and suggest a fast colonization of the open-ocean environment since the upper Bajocian
    corecore