5 research outputs found

    Chemosystematic aspects of polyisoprenylated benzophenones from the genus Clusia

    No full text
    Benzophenone derivatives are special metabolites that arouse great scientific interest. The Clusiaceae family is known for producing large amounts of benzophenone derivatives with several isoprene residues on their structures, which are responsible for the observed complexity and structural variety in this class of substances, and also contribute to their biological activities. Clusia is an important genus belonging to Clusiaceae, with 55 different polyisoprenylated benzophenones identified so far. These substances were analyzed from biosynthetic and chemosystematic points of view, allowing the determination of characteristics regarding their production, accumulation and distribution within this genus. Polyisoprenylated benzophenones found in Clusia showed a high prenylation degree, with 2 to 5 isoprene units and a greater occurrence in flowers and fruits. Section Cordylandra showed a very similar occurrence of 2,4,6-trihydroxybenzophenone derivatives and bicyclo[3.3.1]nonane-2,4,9-trione derivatives, the majority of them with 4 isoprene units. In section Anandrogyne there is a predominance of simple 2,4,6-trihydroxy-benzophenone derivatives, with 2 isoprene units, and in Chlamydoclusia predominates bicyclo[3.3.1]nonane-2,4,9-trione derivatives with 4 isoprene units. Although highly prenylated, these substances showed low oxidation indexes, which from an evolutionary perspective corroborates the fact that Clusiaceae is a family in transition, with some common aspects with both basal and derived botanical families

    Clusia criuva Cambess. (Clusiaceae): anatomical characterization, chemical prospecting and antioxidant activity

    No full text
    ABSTRACT This study aims the anatomical description and chemical characterization of aerial parts of Clusia criuva Cambess., Clusiaceae in addition to the evaluation of the antioxidant activity of crude extracts, correlated to the flavonoid content. The morphological characterization was performed using traditional techniques of plant anatomy. For phytochemical studies, crude extracts were obtained by static maceration and analyzed by thin layer chromatography. The antioxidant activity and the flavonoids content were determined by colorimetric methods involving, respectively, 2,2-diphenyl-1-picrylhydrazyl free radical and aluminum chloride. C. criuva has uniseriate epidermis, paracytic stomata, hypostomatic leaves, cuticular flanges and cordiform vascular cylinder with accessory bundles. Chemical prospecting confirmed the abundant presence of terpenes and phenols in the extracts of leaves and of fruits. The methanolic extract of seeds showed the lowest EC50 value, but the methanolic extract of pericarps exhibited the highest maximum antioxidant activity. The results suggested a high percentage of flavonoids in the hexanic extract of pericarps, however, this could represent, in fact, the presence of benzophenones. Secretory ducts and the shape of the midrib are diagnostic for C. criuva. The antioxidant activity is not directly related to the flavonoids. The results indicate the importance of future studies with C. criuva chemical constituents
    corecore