7,417 research outputs found
Old open clusters: UBGVRI photometry of NGC 2506
UBGVRI photometry for the open cluster NGC 2506 is presented. From comparison
of the observed colour-magnitude diagrams with simulations based on stellar
evolutionary models we derive in a self consistent way reddening, distance, and
age of the cluster: E(B-V)=0-0.07, (m-M)o = 12.6, age = 1.5-2.2 Gyr. The
cluster shows a well definite secondary sequence, suggesting that binary
systems constitute about 20 % of the cluster members visible in the
colour-magnitude diagram.Comment: 11 pages, 7 figures, MNRAS latex style, accepte
Driven low density granular mixtures
We study the steady state properties of a 2D granular mixture in the presence
of energy driving by employing simple analytical estimates and Direct
Simulation Monte Carlo. We adopt two different driving mechanisms: a) a
homogeneous heat bath with friction and b) a vibrating boundary (thermal or
harmonic) in the presence of gravity. The main findings are: the appearance of
two different granular temperatures, one for each species; the existence of
overpopulated tails in the velocity distribution functions and of non trivial
spatial correlations indicating the spontaneous formation of cluster
aggregates. In the case of a fluid subject to gravity and to a vibrating
boundary, both densities and temperatures display non uniform profiles along
the direction normal to the wall, in particular the temperature profiles are
different for the two species while the temperature ratio is almost constant
with the height. Finally, we obtained the velocity distributions at different
heights and verified the non gaussianity of the resulting distributions.Comment: 19 pages, 12 figures, submitted for publicatio
New Results from a Near-Infrared Search for Hidden Broad-Line Regions in Ultraluminous Infrared Galaxies
This paper reports the latest results from a near-infrared search for hidden
broad-line regions (BLRs: FWHM >~ 2,000 km/s) in ultraluminous infrared
galaxies (ULIGs). The new sample contains thirty-nine ULIGs from the 1-Jy
sample selected for their lack of BLRs at optical wavelengths. The results from
this new study are combined with those from our previous optical and
near-infrared surveys to derive the fraction of all ULIGs with optical or
near-infrared signs of genuine AGN activity (either a BLR or [Si VI] emission).
Comparisons of the dereddened emission-line luminosities of the optical or
obscured BLRs detected in the ULIGs of the 1-Jy sample with those of optical
quasars indicate that the obscured AGN/quasar in ULIGs is the main source of
energy in at least 15 -- 25% of all ULIGs in the 1-Jy sample. This fraction is
30 -- 50% among ULIGs with L_ir > 10^{12.3} L_sun. These results are compatible
with those from recent mid-infrared spectroscopic surveys carried out with ISO.
(abridged)Comment: 40 pages including 10 figures and 3 tables (Table 3 should be printed
in landscape mode
Interface pinning and slow ordering kinetics on infinitely ramified fractal structures
We investigate the time dependent Ginzburg-Landau (TDGL) equation for a non
conserved order parameter on an infinitely ramified (deterministic) fractal
lattice employing two alternative methods: the auxiliary field approach and a
numerical method of integration of the equations of evolution. In the first
case the domain size evolves with time as , where is
the anomalous random walk exponent associated with the fractal and differs from
the normal value 2, which characterizes all Euclidean lattices. Such a power
law growth is identical to the one observed in the study of the spherical model
on the same lattice, but fails to describe the asymptotic behavior of the
numerical solutions of the TDGL equation for a scalar order parameter. In fact,
the simulations performed on a two dimensional Sierpinski Carpet indicate that,
after an initial stage dominated by a curvature reduction mechanism \`a la
Allen-Cahn, the system enters in a regime where the domain walls between
competing phases are pinned by lattice defects.
The lack of translational invariance determines a rough free energy
landscape, the existence of many metastable minima and the suppression of the
marginally stable modes, which in translationally invariant systems lead to
power law growth and self similar patterns. On fractal structures as the
temperature vanishes the evolution is frozen, since only thermally activated
processes can sustain the growth of pinned domains.Comment: 16 pages+14 figure
Optical Spectroscopy of the IRAS 1-Jy Sample of Ultraluminous Infrared Galaxies
This paper discusses the optical spectroscopic properties of the IRAS 1-Jy
sample of ultraluminous infrared galaxies (ULIGs). One hundred and eight of the
118 1-Jy ULIGs have been observed at dlambda = 8.3 AA resolution over the
wavelength range ~4500 A -- 8900 A. These data are combined with large,
previously published sets of optical spectroscopic data of lower luminosity
infrared galaxies to look for systematic trends with infrared luminosity over
the luminosity range L_ir ~ 10^{10.5}-10^{13} L_sun. As found in previous
studies, the fraction of Seyfert galaxies among luminous infrared galaxies
increases abruptly above L_ir ~ 10^{12.3} L_sun --- about 50% of the galaxies
with L_ir > 10^{12.3} L_sun present Seyfert characteristics. Many of the
optical and infrared spectroscopic properties of the Seyfert galaxies are
consistent with the presence of a genuine active galactic nucleus (AGN). About
30% of these galaxies are Seyfert 1s with broad-line regions similar to those
of optical quasars. The percentage of Seyfert 1 ULIGs increases with infrared
luminosity, contrary to the predictions of the standard unification model for
Seyfert galaxies. Comparisons of the broad-line luminosities of optical and
obscured Seyfert 1 ULIGs with those of optically selected quasars of comparable
bolometric luminosity suggest that the dominant energy source in most of these
ULIGs is the same as in optical quasars, namely mass accretion onto a
supermassive black hole, rather than a starburst. These results are consistent
with recently published ISO, ASCA, and VLBI data. (abridged)Comment: Text and 23 figures (45 pages), Tables 1 - 6 (16 pages
Integral Field Spectroscopy of 23 Spiral Bulges
We have obtained Integral Field Spectroscopy for 23 spiral bulges using
INTEGRAL on the William Herschel Telescope and SPIRAL on the Anglo-Australian
Telescope. This is the first 2D survey directed solely at the bulges of spiral
galaxies. Eleven galaxies of the sample do not have previous measurements of
the stellar velocity dispersion (sigma*). These data are designed to complement
our Space Telescope Imaging Spectrograph program for estimating black hole
masses in the range 10^6-10^8M_sun using gas kinematics from nucleated disks.
These observations will serve to derive the stellar dynamical bulge properties
using the traditional Mgb and CaII triplets. We use both Cross Correlation and
Maximum Penalized Likelihood to determine projected sigma* in these systems and
present radial velocity fields, major axis rotation curves, curves of growth
and sigma* fields. Using the Cross Correlation to extract the low order 2D
stellar dynamics we generally see coherent radial rotation and irregular
velocity dispersion fields suggesting that sigma* is a non-trivial parameter to
estimate.Comment: 11 pages, 30 figures, accepted for publication in ApJ
Verifying big data topologies by-design: a semi-automated approach
Big data architectures have been gaining momentum in recent years. For instance, Twitter uses stream processing frameworks like Apache Storm to analyse billions of tweets per minute and learn the trending topics. However, architectures that process big data involve many different components interconnected via semantically different connectors. Such complex architectures make possible refactoring of the applications a difficult task for software architects, as applications might be very different with respect to the initial designs. As an aid to designers and developers, we developed OSTIA (Ordinary Static Topology Inference Analysis) that allows detecting the occurrence of common anti-patterns across big data architectures and exploiting software verification techniques on the elicited architectural models. This paper illustrates OSTIA and evaluates its uses and benefits on three industrial-scale case-studies
Critical properties of Ising model on Sierpinski fractals. A finite size scaling analysis approach
The present paper focuses on the order-disorder transition of an Ising model
on a self-similar lattice. We present a detailed numerical study, based on the
Monte Carlo method in conjunction with the finite size scaling method, of the
critical properties of the Ising model on some two dimensional deterministic
fractal lattices with different Hausdorff dimensions. Those with finite
ramification order do not display ordered phases at any finite temperature,
whereas the lattices with infinite connectivity show genuine critical behavior.
In particular we considered two Sierpinski carpets constructed using different
generators and characterized by Hausdorff dimensions d_H=log 8/log 3 = 1.8927..
and d_H=log 12/log 4 = 1.7924.., respectively.
The data show in a clear way the existence of an order-disorder transition at
finite temperature in both Sierpinski carpets.
By performing several Monte Carlo simulations at different temperatures and
on lattices of increasing size in conjunction with a finite size scaling
analysis, we were able to determine numerically the critical exponents in each
case and to provide an estimate of their errors.
Finally we considered the hyperscaling relation and found indications that it
holds, if one assumes that the relevant dimension in this case is the Hausdorff
dimension of the lattice.Comment: 21 pages, 7 figures; a new section has been added with results for a
second fractal; there are other minor change
Steady state properties of a mean field model of driven inelastic mixtures
We investigate a Maxwell model of inelastic granular mixture under the
influence of a stochastic driving and obtain its steady state properties in the
context of classical kinetic theory. The model is studied analytically by
computing the moments up to the eighth order and approximating the
distributions by means of a Sonine polynomial expansion method. The main
findings concern the existence of two different granular temperatures, one for
each species, and the characterization of the distribution functions, whose
tails are in general more populated than those of an elastic system. These
analytical results are tested against Monte Carlo numerical simulations of the
model and are in general in good agreement. The simulations, however, reveal
the presence of pronounced non-gaussian tails in the case of an infinite
temperature bath, which are not well reproduced by the Sonine method.Comment: 23 pages, 10 figures, submitted for publicatio
- …