329 research outputs found
Nuclear Star Clusters across the Hubble Sequence
Over the last decade, HST imaging studies have revealed that the centers of
most galaxies are occupied by compact, barely resolved sources. Based on their
structural properties, position in the fundamental plane, and spectra, these
sources clearly have a stellar origin. They are therefore called ``nuclear star
clusters'' (NCs) or ``stellar nuclei''. NCs are found in galaxies of all Hubble
types, suggesting that their formation is intricately linked to galaxy
evolution. In this contribution, I briefly review the results from recent
studies of NCs, touch on some ideas for their formation, and mention some open
issues related to the possible connection between NCs and supermassive black
holes.Comment: 6 page conference proceedings, to appear in "The impact of HST on
European Astronomy" (41st ESLAB Symposium), pdflatex file, uses svmult.cls
(included
Evolution of supermassive black holes
Supermassive black holes (SMBHs) are nowadays believed to reside in most
local galaxies, and the available data show an empirical correlation between
bulge luminosity - or stellar velocity dispersion - and black hole mass,
suggesting a single mechanism for assembling black holes and forming spheroids
in galaxy halos. The evidence is therefore in favour of a co-evolution between
galaxies, black holes and quasars. In cold dark matter cosmogonies, small-mass
subgalactic systems form first to merge later into larger and larger
structures. In this paradigm galaxy halos experience multiple mergers during
their lifetime. If every galaxy with a bulge hosts a SMBH in its center, and a
local galaxy has been made up by multiple mergers, then a black hole binary is
a natural evolutionary stage. The evolution of the supermassive black hole
population clearly has to be investigated taking into account both the
cosmological framework and the dynamical evolution of SMBHs and their hosts.
The seeds of SMBHs have to be looked for in the early Universe, as very
luminous quasars are detected up to redshift higher than z=6. These black holes
evolve then in a hierarchical fashion, following the merger hierarchy of their
host halos. Accretion of gas, traced by quasar activity, plays a fundamental
role in determining the two parameters defining a black hole: mass and spin. A
particularly intriguing epoch is the initial phase of SMBH growth. It is very
challenging to meet the observational constraints at z=6 if BHs are not fed at
very high rates in their infancy.Comment: Extended version of the invited paper to appear in the Proceedings of
the Conference "Relativistic Astrophysics and Cosmology - Einstein's Legacy
Vortex states in 2D superconductor at high magnetic field in a periodic pinning potential
The effect of a periodic pinning array on the vortex state in a 2D
superconductor at low temperatures is studied within the framework of the
Ginzburg-Landau approach. It is shown that attractive interaction of vortex
cores to a commensurate pin lattice stabilizes vortex solid phases with long
range positional order against violent shear fluctuations. Exploiting a simple
analytical method, based on the Landau orbitals description, we derive a rather
detailed picture of the low temperatures vortex state phase diagram. It is
predicted that for sufficiently clean samples application of an artificial
periodic pinning array would enable one to directly detect the intrinsic shear
stiffness anisotropy characterizing the ideal vortex lattice.Comment: 8 pages, 5 figure
Vortex Pinball Under Crossed AC Drives in Superconductors with Periodic Pinning Arrays
Vortices driven with both a transverse and a longitudinal AC drive which are
out of phase are shown to exhibit a novel commensuration-incommensuration
effect when interacting with periodic substrates. For different AC driving
parameters, the motion of the vortices forms commensurate orbits with the
periodicity of the pinning array. When the commensurate orbits are present,
there is a finite DC critical depinning threshold, while for the incommensurate
phases the vortices are delocalized and the DC depinning threshold is absent.Comment: 4 pages, 4 postscript figure
Use of high-frequency ultrasound to study the prenatal development of cranial neural tube defects and hydrocephalus in Gldc-deficient mice
Objective: We used non-invasive high-frequency ultrasound (HFUS) imaging to investigate embryonic brain development in a mouse model for neural tube defects (NTDs) and non-ketotic hyperglycinemia (NKH). Method: Using HFUS, we imaged embryos carrying loss of function alleles of Gldc encoding glycine decarboxylase, a component of the glycine cleavage system in mitochondrial folate metabolism, which is known to be associated with cranial NTDs and NKH in humans. We serially examined the same litter during the second half of embryonic development and quantified cerebral structures. Genotype was confirmed using PCR. Histology was used to confirm ultrasound findings. Results: High-frequency ultrasound allowed in utero detection of two major brain abnormalities in Gldc-deficient mouse embryos, cranial NTDs (exencephaly) and ventriculomegaly (corresponding with the previous finding of post-natal hydrocephalus). Serial ultrasound allowed individual embryos to be analysed at successive gestational time points. From embryonic day 16.5 to 18.5, the lateral ventricle volume reduced in wild-type and heterozygous embryos but increased in homozygous Gldc-deficient embryos. Conclusion: Exencephaly and ventriculomegaly were detectable by HFUS in homozygous Gldc-deficient mouse embryos indicating this to be an effective tool to study CNS development. Longitudinal analysis of the same embryo allowed the prenatal onset and progression of ventricle enlargement in Gldc-deficient mice to be determined
Commensurate and Incommensurate Vortex Lattice Melting in Periodic Pinning Arrays
We examine the melting of commensurate and incommensurate vortex lattices
interacting with square pinning arrays through the use of numerical
simulations. For weak pinning strength in the commensurate case we observe an
order-order transition from a commensurate square vortex lattice to a
triangular floating solid phase as a function of temperature. This floating
solid phase melts into a liquid at still higher temperature. For strong pinning
there is only a single transition from the square pinned lattice to the liquid
state. For strong pinning in the incommensurate case, we observe a multi-stage
melting in which the interstitial vortices become mobile first, followed by the
melting of the entire lattice, consistent with recent imaging experiments. The
initial motion of vortices in the incommensurate phase occurs by an exchange
process of interstitial vortices with vortices located at the pinning sites. We
have also examined the vortex melting behavior for higher matching fields and
find that a coexistence of a commensurate pinned vortex lattice with an
interstitial vortex liquid occurs while at higher temperatures the entire
vortex lattice melts. For triangular arrays at incommensurate fields higher
than the first matching field we observe that the initial vortex motion can
occur through a novel correlated ring excitation where a number of vortices can
rotate around a pinned vortex. We also discuss the relevance of our results to
recent experiments of colloidal particles interacting with periodic trap
arrays.Comment: 8 figure
Local mean-field study of capillary condensation in silica aerogels
We apply local mean-field (i.e. density functional) theory to a lattice model
of a fluid in contact with a dilute, disordered gel network. The gel structure
is described by a diffusion-limited cluster aggregation model. We focus on the
influence of porosity on both the hysteretic and the equilibrium behavior of
the fluid as one varies the chemical potential at low temperature. We show that
the shape of the hysteresis loop changes from smooth to rectangular as the
porosity increases and that this change is associated to disorder-induced
out-of-equilibrium phase transitions that differ on adsorption and on
desorption. Our results provide insight in the behavior of He in silica
aerogels.Comment: 19 figure
Critical Currents and Vortex States at Fractional Matching Fields in Superconductors with Periodic Pinning
We study vortex states and dynamics in 2D superconductors with periodic
pinning at fractional sub-matching fields using numerical simulations. For
square pinning arrays we show that ordered states form at 1/1, 1/2, and 1/4
filling fractions while only partially ordered states form at other filling
fractions, such as 1/3 and 1/5, in agreement with recent imaging experiments.
For triangular pinning arrays we observe matching effects at filling fractions
of 1/1, 6/7, 2/3, 1/3, 1/4, 1/6, and 1/7. For both square and triangular
pinning arrays we also find that, for certian sub-matching fillings, vortex
configurations depend on pinning strength. For weak pinning, ordering in which
a portion of the vortices are positioned between pinning sites can occur.
Depinning of the vortices at the matching fields, where the vortices are
ordered, is elastic while at the incommensurate fields the motion is plastic.
At the incommensurate fields, as the applied driving force is increased, there
can be a transition to elastic flow where the vortices move along the pinning
sites in 1D channels and a reordering transition to a triangular or distorted
triangular lattice. We also discuss the current-voltage curves and how they
relate to the vortex ordering at commensurate and incommensurate fields.Comment: 14 figure
Massive binary black holes in galactic nuclei and their path to coalescence
Massive binary black holes form at the centre of galaxies that experience a
merger episode. They are expected to coalesce into a larger black hole,
following the emission of gravitational waves. Coalescing massive binary black
holes are among the loudest sources of gravitational waves in the Universe, and
the detection of these events is at the frontier of contemporary astrophysics.
Understanding the black hole binary formation path and dynamics in galaxy
mergers is therefore mandatory. A key question poses: during a merger, will the
black holes descend over time on closer orbits, form a Keplerian binary and
coalesce shortly after? Here we review progress on the fate of black holes in
both major and minor mergers of galaxies, either gas-free or gas-rich, in
smooth and clumpy circum-nuclear discs after a galactic merger, and in
circum-binary discs present on the smallest scales inside the relic nucleus.Comment: Accepted for publication in Space Science Reviews. To appear in hard
cover in the Space Sciences Series of ISSI "The Physics of Accretion onto
Black Holes" (Springer Publisher
Two refreshing views of Fluctuation Theorems through Kinematics Elements and Exponential Martingale
In the context of Markov evolution, we present two original approaches to
obtain Generalized Fluctuation-Dissipation Theorems (GFDT), by using the
language of stochastic derivatives and by using a family of exponential
martingales functionals. We show that GFDT are perturbative versions of
relations verified by these exponential martingales. Along the way, we prove
GFDT and Fluctuation Relations (FR) for general Markov processes, beyond the
usual proof for diffusion and pure jump processes. Finally, we relate the FR to
a family of backward and forward exponential martingales.Comment: 41 pages, 7 figures; version2: 45 pages, 7 figures, minor revisions,
new results in Section
- …