30 research outputs found

    Role of Subsurface Geo-Energy Pilot and Demonstration Sites in Delivering Net Zero

    Get PDF
    Recent research suggests that the effects of climate change are already tangible, making the requirement for net zero more pressing than ever. New emissions targets have been announced in April 2021 by various governments, including by the United Kingdom, United States, and China, prior to the Conference of the Parties (COP26) in Glasgow. Part of the solution for net zero will be geo-energy technologies in the subsurface, these include: mine water geothermal, aquifer thermal energy storage (ATES), enhanced geothermal systems and other thermal storage options, compressed air energy storage (CAES), and carbon dioxide capture and storage (CCS) including bioenergy CCS (BECCS). Subsurface net zero technologies have been studied by geologists at laboratory scale and with models, but also require testing at greater-than laboratory scale and in representative conditions not reproducible in laboratories and models. Test, pilot and demonstration facilities aid rock characterisation process understanding and up-scaling, and thereby provide a bridge between laboratory testing and computer modelling and full-scale operation. Examples of test sites that have progressed technology development include the Otway International Test Centre (Australia, CCS) and the Äspö Hard Rock Laboratory (Sweden, geological radioactive waste disposal). These sites have provided scale up for key research questions allowing science issues of relevance to regulation, licencing and permitting to be examined at scale in controlled environments. Successful operations at such sites allow research to be seen at first hand to inform the public, regulators, supply chain companies and investors that such technologies can work safely and economically. A Geological Society conference on the “Role of subsurface research labs in delivering net zero” in February 2021 considered the value of test sites and gaps in their capability. Gaps were identified in two areas: 1) test facilities to aid the design of low cost, high resolution, unobtrusive seismic and other monitoring for a seismically noisy urban environment with a sensitive human population, for example for ATES in urban areas; and 2) a dedicated through-fault zone test site to understand fault transmissivity and reactivation. Conference participants also recommended investment and development in test sites, shared facilities and risk, joint strategies, data interoperability and international collaboration

    Passive treatment of mn-rich mine water : using fluorescence to observe microbiological activity

    No full text
    Conventionally, limestones have been used in passive mine water treatment systems. Limestones with the highest proportion of calcite are recommended since they have the greatest long-term alkalinity generating potential. Manganese is present in mine waters and needs to be removed in order to comply with environmental quality standards. This paper compares seven different Permian carbonate rocks, both limestone and dolomite, in their ability to promote manganese oxidation in real mine waters over an 8-h period. The substrates are characterised using thermogravimetric analysis, X-Ray diffraction and scanning electron microscopy. Fluorescence spectrophotometry is used to monitor any changes in the dissolved organic matter concentration in the water as manganese is removed. We determine that there is no statistically significant correlation between manganese removal and the proportion of calcite or between manganese removal and substrate surface roughness. Fluorescence spectrophotometry demonstrates that there is a distinct change in the observed spectra in the water during manganese removal. There is a positive and statistically significant correlation between manganese removal and the production of a tyrosine-like substance (up to ~150 ppb in 8 h), which fluoresces at 270–280 nm excitation wavelength and 300–310 nm emission wavelength, suggesting that microbial activity is an important factor in promoting manganese removal within dolomite passive treatment systems. It may be possible to use fluorescence spectrophotometry to monitor for microbial activity in passive treatment systems

    Production of `green' concrete using red gypsum and waste

    No full text
    The main cost incurred in the production of concrete paving blocks is the cost of the cement-based binders. In addition, there is the environmental cost of quarrying and processing of these primary materials. Gypsum-based industrial by-products have been identified as alternative sources of cement. These materials have little or no production cost and their reuse negates the need for disposal, offering a more sustainable material for the production of paving blocks. Laboratory trials have investigated the properties of red gypsum, derived as a coproduct associated with titanium dioxide manufacture, mixed with pulverised-fuel ash, ground granulated blastfurnace slag, lime and basic steel slag. An assessment of samples was made using unconfined compressive strength after 28 days curing. It was found that a red gypsum ground granulated blastfurnace slag mix achieved the highest unconfined compressive strength (up to 39 MPa) and was selected for further investigation. Two binders, composed primarily of red gypsum and ground granulated blastfurnace slag, were mixed with sand and pea gravel to make 100 mm concrete cubes and compared with Portland cement for uniaxial compressive strength, stiffness and workability. The red gypsum-based binder compared favourably with Portland cement, indicating that there is potential to integrate red gypsum into concrete block mixes. </jats:p

    Cenozoic cooling and denudation in the North Pennines (northern England, UK) constrained by apatite fission-track analysis of cuttings from the Eastgate Borehole

    No full text
    The Cenozoic landscape development of Britain remains relatively poorly understood. On the one hand, ‘plumists’ have tried to explain the present-day topography as a consequence of effects of the Iceland mantle plume during the Palaeocene-Eocene British Tertiary Igneous Province (BTIP) magmatism, with little or no subsequent modification. On the other hand, abundant evidence exists from fluvial and marine terraces and superimposed karstic levels for significant vertical crustal motions during the Quaternary, which clearly has nothing to do with any mantle plume. To shed light on this issue, we present the first publication of data that constrain the Cenozoic thermal history of the North Pennine uplands of northern England, from apatite fission-track analysis of drill cuttings from the Eastgate Borehole in Weardale, in the western part of County Durham. Our results indicate ∼650 m of regional denudation since the latest Oligocene/Early Miocene, plus the ∼400 m of localized entrenchment that has created the modern Weardale valley. Before the latest Oligocene/Early Miocene, but following the BTIP magmatism, the crust in this region experienced significant cooling, mainly due to a decrease in the geothermal gradient from ∼55 to 61 °C km−1 to the present 38 °C km−1, along with ∼300 ± 200 m of denudation. Although significant BTIP magmatism occurred in northern England, it thus had only a limited net effect; the crust experienced dramatic heating, but cooled back to its original thermal state within, at most, a few tens of millions of years. We suggest that this rapid cooling effect resulted from westward flow of relatively cold material within the mobile lower-crustal layer, driven by the lateral pressure gradient induced by earlier heating effects and effects of surface processes. Whatever topography developed during the Palaeogene, as a direct result of these heating effects, underplating at the base of the crust, and the associated modest denudation, was presumably also short-lived; significant changes to the crustal thickness, and thus to the topography, can be envisaged as a consequence of subsequent lower-crustal flow
    corecore