19,535 research outputs found

    To what extent does severity of loneliness vary among different mental health diagnostic groups: A cross-sectional study.

    Get PDF
    Loneliness is a common and debilitating problem in individuals with mental health disorders. However, our knowledge on severity of loneliness in different mental health diagnostic groups and factors associated with loneliness is poor, thus limiting the ability to target and improve loneliness interventions. The current study investigated the association between diagnoses and loneliness and explored whether psychological and social factors were related to loneliness. This study employed a cross-sectional design using data from a completed study which developed a measure of social inclusion. It included 192 participants from secondary, specialist mental health services with a primary diagnosis of psychotic disorders (n = 106), common mental disorders (n = 49), or personality disorders (n = 37). The study explored differences in loneliness between these broad diagnostic groups, and the relationship to loneliness of: affective symptoms, social isolation, perceived discrimination, and internalized stigma. The study adhered to the STROBE checklist for observational research. People with common mental disorders (MD = 3.94, CI = 2.15 to 5.72, P < 0.001) and people with personality disorders (MD = 4.96, CI = 2.88 to 7.05, P < 0.001) reported higher levels of loneliness compared to people with psychosis. These differences remained significant after adjustment for all psychological and social variables. Perceived discrimination and internalized stigma were also independently associated with loneliness and substantially contributed to a final explanatory model. The severity of loneliness varies between different mental health diagnostic groups. Both people with common mental disorders and personality disorders reported higher levels of loneliness than people with psychosis. Addressing perceived mental health discrimination and stigma may help to reduce loneliness

    Reactor antineutrino spectra and their application to antineutrino-induced reactions. II

    Get PDF
    The antineutrino and electron spectra associated with various nuclear fuels are calculated. While there are substantial differences between the spectra of different uranium and plutonium isotopes, the dependence on the energy and flux of the fission-inducing neutrons is very weak. The resulting spectra can be used for the calculation of the antineutrino and electron spectra of an arbitrary nuclear reactor at various stages of its refueling cycle. The sources of uncertainties in the spectrum are identified and analyzed in detail. The exposure time dependence of the spectrum is also discussed. The averaged cross sections of the inverse neutron β decay, weak charged and neutral-current-induced deuteron disintegration, and the antineutrino-electron scattering are then evaluated using the resulting ν̅_e spectra. [RADIOACTIVITY, FISSION 235U, 238U, (^239)Pu, (^240)Pu, (^241)Pu, antineutrino and electron spectra calculated. σ for ν̅ induced reactions analyzed.

    3-Body Dynamics in a (1+1) Dimensional Relativistic Self-Gravitating System

    Full text link
    The results of our study of the motion of a three particle, self-gravitating system in general relativistic lineal gravity is presented for an arbitrary ratio of the particle masses. We derive a canonical expression for the Hamiltonian of the system and discuss the numerical solution of the resulting equations of motion. This solution is compared to the corresponding non-relativistic and post-Newtonian approximation solutions so that the dynamics of the fully relativistic system can be interpretted as a correction to the one-dimensional Newtonian self-gravitating system. We find that the structure of the phase space of each of these systems yields a large variety of interesting dynamics that can be divided into three distinct regions: annulus, pretzel, and chaotic; the first two being regions of quasi-periodicity while the latter is a region of chaos. By changing the relative masses of the three particles we find that the relative sizes of these three phase space regions changes and that this deformation can be interpreted physically in terms of the gravitational interactions of the particles. Furthermore, we find that many of the interesting characteristics found in the case where all of the particles share the same mass also appears in our more general study. We find that there are additional regions of chaos in the unequal mass system which are not present in the equal mass case. We compare these results to those found in similar systems.Comment: latex, 26 pages, 17 figures, high quality figures available upon request; typos and grammar correcte

    Dynamical N-body Equlibrium in Circular Dilaton Gravity

    Full text link
    We obtain a new exact equilibrium solution to the N-body problem in a one-dimensional relativistic self-gravitating system. It corresponds to an expanding/contracting spacetime of a circle with N bodies at equal proper separations from one another around the circle. Our methods are straightforwardly generalizable to other dilatonic theories of gravity, and provide a new class of solutions to further the study of (relativistic) one-dimensional self-gravitating systems.Comment: 4 pages, latex, reference added, minor changes in wordin

    On the Standard Approach to Renormalization Group Improvement

    Full text link
    Two approaches to renormalization-group improvement are examined: the substitution of the solutions of running couplings, masses and fields into perturbatively computed quantities is compared with the systematic sum of all the leading log (LL), next-to-leading log (NLL) etc. contributions to radiatively corrected processes, with n-loop expressions for the running quantities being responsible for summing N^{n}LL contributions. A detailed comparison of these procedures is made in the context of the effective potential V in the 4-dimensional O(4) massless λϕ4\lambda \phi^{4} model, showing the distinction between these procedures at two-loop order when considering the NLL contributions to the effective potential V.Comment: 6 page

    Statistical Mechanics of Relativistic One-Dimensional Self-Gravitating Systems

    Get PDF
    We consider the statistical mechanics of a general relativistic one-dimensional self-gravitating system. The system consists of NN-particles coupled to lineal gravity and can be considered as a model of NN relativistically interacting sheets of uniform mass. The partition function and one-particle distitrubion functions are computed to leading order in 1/c1/c where cc is the speed of light; as c→∞c\to\infty results for the non-relativistic one-dimensional self-gravitating system are recovered. We find that relativistic effects generally cause both position and momentum distribution functions to become more sharply peaked, and that the temperature of a relativistic gas is smaller than its non-relativistic counterpart at the same fixed energy. We consider the large-N limit of our results and compare this to the non-relativistic case.Comment: latex, 60 pages, 22 figure

    Cosmological Models in Two Spacetime Dimensions

    Get PDF
    Various physical properties of cosmological models in (1+1) dimensions are investigated. We demonstrate how a hot big bang and a hot big crunch can arise in some models. In particular, we examine why particle horizons do not occur in matter and radiation models. We also discuss under what circumstances exponential inflation and matter/radiation decoupling can happen. Finally, without assuming any particular equation of state, we show that physical singularities can occur in both untilted and tilted universe models if certain assumptions are satisfied, similar to the (3+1)-dimensional cases.Comment: 22 pgs., 2 figs. (available on request) (revised version contains `paper.tex' macro file which was omitted in earlier version

    Chaos in an Exact Relativistic 3-body Self-Gravitating System

    Get PDF
    We consider the problem of three body motion for a relativistic one-dimensional self-gravitating system. After describing the canonical decomposition of the action, we find an exact expression for the 3-body Hamiltonian, implicitly determined in terms of the four coordinate and momentum degrees of freedom in the system. Non-relativistically these degrees of freedom can be rewritten in terms of a single particle moving in a two-dimensional hexagonal well. We find the exact relativistic generalization of this potential, along with its post-Newtonian approximation. We then specialize to the equal mass case and numerically solve the equations of motion that follow from the Hamiltonian. Working in hexagonal-well coordinates, we obtaining orbits in both the hexagonal and 3-body representations of the system, and plot the Poincare sections as a function of the relativistic energy parameter η\eta . We find two broad categories of periodic and quasi-periodic motions that we refer to as the annulus and pretzel patterns, as well as a set of chaotic motions that appear in the region of phase-space between these two types. Despite the high degree of non-linearity in the relativistic system, we find that the the global structure of its phase space remains qualitatively the same as its non-relativisitic counterpart for all values of η\eta that we could study. However the relativistic system has a weaker symmetry and so its Poincare section develops an asymmetric distortion that increases with increasing η\eta . For the post-Newtonian system we find that it experiences a KAM breakdown for η≃0.26\eta \simeq 0.26: above which the near integrable regions degenerate into chaos.Comment: latex, 65 pages, 36 figures, high-resolution figures available upon reques
    • …
    corecore