5,523 research outputs found

    Sample-specific and Ensemble-averaged Magnetoconductance of Individual Single-Wall Carbon Nanotubes

    Full text link
    We discuss magnetotransport measurements on individual single-wall carbon nanotubes with low contact resistance, performed as a function of temperature and gate voltage. We find that the application of a magnetic field perpendicular to the tube axis results in a large magnetoconductance of the order of e^2/h at low temperature. We demonstrate that this magnetoconductance consists of a sample-specific and of an ensemble-averaged contribution, both of which decrease with increasing temperature. The observed behavior resembles very closely the behavior of more conventional multi-channel mesoscopic wires, exhibiting universal conductance fluctuations and weak localization. A theoretical analysis of our experiments will enable to reach a deeper understanding of phase-coherent one-dimensional electronic motion in SWNTs.Comment: Replaced with published version. Minor changes in tex

    Spin-dependent Quantum Interference in Single-Wall Carbon Nanotubes with Ferromagnetic Contacts

    Full text link
    We report the experimental observation of spin-induced magnetoresistance in single-wall carbon nanotubes contacted with high-transparency ferromagnetic electrodes. In the linear regime the spin-induced magnetoresistance oscillates with gate voltage in quantitative agreement with calculations based on a Landauer-Buttiker model for independent electrons. Consistent with this interpretation, we find evidence for bias-induced oscillation in the spin-induced magnetoresistance signal on the scale of the level spacing in the nanotube. At higher bias, the spin-induced magnetoresistance disappears because of a sharp decrease in the effective spin-polarization injected from the ferromagnetic electrodes.Comment: Replaced with published versio

    Simulation and analysis of in vitro DNA evolution

    Full text link
    We study theoretically the in vitro evolution of a DNA sequence by binding to a transcription factor. Using a simple model of protein-DNA binding and available binding constants for the Mnt protein, we perform large-scale, realistic simulations of evolution starting from a single DNA sequence. We identify different parameter regimes characterized by distinct evolutionary behaviors. For each regime we find analytical estimates which agree well with simulation results. For small population sizes, the DNA evolutional path is a random walk on a smooth landscape. While for large population sizes, the evolution dynamics can be well described by a mean-field theory. We also study how the details of the DNA-protein interaction affect the evolution.Comment: 11 pages, 11 figures. Submitted to PNA

    Evidence for sub-Chandrasekhar Type Ia supernovae from the last major merger

    Get PDF
    We investigate the contribution of sub-Chandrasekhar mass Type Ia supernovae to the chemical enrichment of the Gaia Sausage galaxy, the progenitor of a significant merger event in the early life of the Milky Way. Using a combination of data from Nissen & Schuster (2010), the 3rd GALAH data release (with 1D NLTE abundance corrections) and APOGEE data release 16, we fit analytic chemical evolution models to a 9-dimensional chemical abundance space (Fe, Mg, Si, Ca, Cr, Mn, Ni, Cu, Zn) in particular focusing on the iron-peak elements, Mn and Ni. We find that low [Mn/Fe] 0.15dex\sim-0.15\,\mathrm{dex} and low [Ni/Fe] 0.3dex\sim-0.3\,\mathrm{dex} Type Ia yields are required to explain the observed trends beyond the [α\alpha/Fe] knee of the Gaia Sausage (approximately at [Fe/H] =1.4dex=-1.4\,\mathrm{dex}). Comparison to theoretical yield calculations indicate a significant contribution from sub-Chandrasekhar mass Type Ia supernovae in this system (from 60\sim60% to 100100% depending on the theoretical model with an additional ±10\pm10% systematic from NLTE corrections). We compare to results from other Local Group environments including dwarf spheroidal galaxies, the Magellanic Clouds and the Milky Way's bulge, finding the Type Ia [Mn/Fe] yield must be metallicity-dependent. Our results suggest that sub-Chandrasekhar mass channels are a significant, perhaps even dominant, contribution to Type Ia supernovae in metal-poor systems, whilst more metal-rich systems could be explained by metallicity-dependent sub-Chandrasekhar mass yields, possibly with additional progenitor mass variation related to star formation history, or an increased contribution from Chandrasekhar mass channels at higher metallicity.Comment: 23 pages, 12 figures, resubmitted to MNRAS following referee's comment

    Probabilistic teleportation of unknown two-particle state via POVM

    Full text link
    We propose a scheme for probabilistic teleportation of unknown two-particle state with partly entangled four-particle state via POVM. In this scheme the teleportation of unknown two-particle state can be realized with certain probability by performing two Bell state measurements, a proper POVM and a unitary transformation.Comment: 5 pages, no figur

    A Simultaneous Quantum Secure Direct Communication Scheme between the Central Party and Other M Parties

    Full text link
    We propose a simultaneous quantum secure direct communication scheme between one party and other three parties via four-particle GHZ states and swapping quantum entanglement. In the scheme, three spatially separated senders, Alice, Bob and Charlie, transmit their secret messages to a remote receiver Diana by performing a series local operations on their respective particles according to the quadripartite stipulation. From Alice, Bob, Charlie and Diana's Bell measurement results, Diana can infer the secret messages. If a perfect quantum channel is used, the secret messages are faithfully transmitted from Alice, Bob and Charlie to Diana via initially shared pairs of four-particle GHZ states without revealing any information to a potential eavesdropper. As there is no transmission of the qubits carrying the secret message in the public channel, it is completely secure for the direct secret communication. This scheme can be considered as a network of communication parties where each party wants to communicate secretly with a central party or server.Comment: 4 pages, no figur

    Sine-Gordon Field Theory for the Kosterlitz-Thouless Transitions on Fluctuating Membranes

    Full text link
    In the preceding paper, we derived Coulomb-gas and sine-Gordon Hamiltonians to describe the Kosterlitz-Thouless transition on a fluctuating surface. These Hamiltonians contain couplings to Gaussian curvature not found in a rigid flat surface. In this paper, we derive renormalization-group recursion relations for the sine-Gordon model using field-theoretic techniques developed to study flat space problems.Comment: REVTEX, 14 pages with 6 postscript figures compressed using uufiles. Accepted for publication in Phys. Rev.

    Confinement Models at Finite Temperature and Density

    Full text link
    In-medium chiral symmetry breaking in confining potential models of QCD is examined. Past attempts to analyse these models have been hampered by infrared divergences that appear at non-zero temperature. We argue that previous attempts to circumvent this problem are not satisfactory and demonstrate a simple resolution. We also show that the expectation that confining models do not exhibit a chiral phase transition is incorrect. The effect of summing ring diagrams is investigated and we present the first determination of the temperature-density phase diagram for two model systems. We find that observables and the phase structure of the confinement models depend strongly on whether quark polarisation is accounted for. Finally, it appears that standard confinement models cannot adequately describe both hadron phenomenology and in-medium properties of QCD.Comment: 9 pages, 10 figures. Version to appear in PR
    corecore