689 research outputs found
Quantum Arnol'd Diffusion in a Simple Nonlinear System
We study the fingerprint of the Arnol'd diffusion in a quantum system of two
coupled nonlinear oscillators with a two-frequency external force. In the
classical description, this peculiar diffusion is due to the onset of a weak
chaos in a narrow stochastic layer near the separatrix of the coupling
resonance. We have found that global dependence of the quantum diffusion
coefficient on model parameters mimics, to some extent, the classical data.
However, the quantum diffusion happens to be slower that the classical one.
Another result is the dynamical localization that leads to a saturation of the
diffusion after some characteristic time. We show that this effect has the same
nature as for the studied earlier dynamical localization in the presence of
global chaos. The quantum Arnol'd diffusion represents a new type of quantum
dynamics and can be observed, for example, in 2D semiconductor structures
(quantum billiards) perturbed by time-periodic external fields.Comment: RevTex, 11 pages including 12 ps-figure
Magnetic and electric field effect on the photoelectron emission from prototype LHC bean screen material.
This paper describes experimental studies of the effect of a dipole field on the photoelectron emission and on the photon reflectivities from LHC beam screen material. These studies were performed using synchrotron radiation from the VEPP-2M storage ring at BINP (Novosibirsk). The particular surface roughness and geometry of the prototype LHC beam screen material requires dedicated experimental measurements. The experiments were performed under conditions close to those expected in the LHC. An important result obtained is that a dipole magnetic field attenuates the photoelectron emission from surface by more than two orders of magnitude with the magnetic field aligned parallel to the surface. The measurements of photon reflectivities, forward scattered and diffuse, and the azimuthal distribution of emitted photoelectrons from the same material are reported. These experimental results are important input for the final design of the LHC beam screen
Measurement of and between 3.12 and 3.72 GeV at the KEDR detector
Using the KEDR detector at the VEPP-4M collider, we have measured
the values of and at seven points of the center-of-mass
energy between 3.12 and 3.72 GeV. The total achieved accuracy is about or
better than at most of energy points with a systematic uncertainty of
about . At the moment it is the most accurate measurement of in
this energy range
Absolute electron and positron fluxes from PAMELA/Fermi and Dark Matter
We extract the positron and electron fluxes in the energy range 10 - 100 GeV
by combining the recent data from PAMELA and Fermi LAT. The {\it absolute
positron and electron} fluxes thus obtained are found to obey the power laws:
and respectively, which can be confirmed by the
upcoming data from PAMELA. The positron flux appears to indicate an excess at
energies E\gsim 50 GeV even if the uncertainty in the secondary positron flux
is added to the Galactic positron background. This leaves enough motivation for
considering new physics, such as annihilation or decay of dark matter, as the
origin of positron excess in the cosmic rays.Comment: Accepted by JCA
New precise determination of the \tau lepton mass at KEDR detector
The status of the experiment on the precise lepton mass measurement
running at the VEPP-4M collider with the KEDR detector is reported. The mass
value is evaluated from the cross section behaviour around the
production threshold. The preliminary result based on 6.7 pb of data is
MeV. Using 0.8 pb of data
collected at the peak the preliminary result is also obtained:
eV.Comment: 6 pages, 8 figures; The 9th International Workshop on Tau-Lepton
Physics, Tau0
Measurement of \Gamma_{ee}(J/\psi)*Br(J/\psi->e^+e^-) and \Gamma_{ee}(J/\psi)*Br(J/\psi->\mu^+\mu^-)
The products of the electron width of the J/\psi meson and the branching
fraction of its decays to the lepton pairs were measured using data from the
KEDR experiment at the VEPP-4M electron-positron collider. The results are
\Gamma_{ee}(J/\psi)*Br(J/\psi->e^+e^-)=(0.3323\pm0.0064\pm0.0048) keV,
\Gamma_{ee}(J/\psi)*Br(J/\psi->\mu^+\mu^-)=(0.3318\pm0.0052\pm0.0063) keV.
Their combinations
\Gamma_{ee}\times(\Gamma_{ee}+\Gamma_{\mu\mu})/\Gamma=(0.6641\pm0.0082\pm0.0100)
keV,
\Gamma_{ee}/\Gamma_{\mu\mu}=1.002\pm0.021\pm0.013 can be used to improve
theaccuracy of the leptonic and full widths and test leptonic universality.
Assuming e\mu universality and using the world average value of the lepton
branching fraction, we also determine the leptonic \Gamma_{ll}=5.59\pm0.12 keV
and total \Gamma=94.1\pm2.7 keV widths of the J/\psi meson.Comment: 7 pages, 6 figure
Search for narrow resonances in e+ e- annihilation between 1.85 and 3.1 GeV with the KEDR Detector
We report results of a search for narrow resonances in e+ e- annihilation at
center-of-mass energies between 1.85 and 3.1 GeV performed with the KEDR
detector at the VEPP-4M e+ e- collider. The upper limit on the leptonic width
of a narrow resonance Gamma(R -> ee) Br(R -> hadr) < 120 eV has been obtained
(at 90 % C.L.)
Measurement of main parameters of the \psi(2S) resonance
A high-precision determination of the main parameters of the \psi(2S)
resonance has been performed with the KEDR detector at the VEPP-4M e^{+}e^{-}
collider in three scans of the \psi(2S) -- \psi(3770) energy range. Fitting the
energy dependence of the multihadron cross section in the vicinity of the
\psi(2S) we obtained the mass value
M = 3686.114 +- 0.007 +- 0.011 ^{+0.002}_{-0.012} MeV and the product of the
electron partial width by the branching fraction into hadrons \Gamma_{ee}*B_{h}
= 2.233 +- 0.015 +- 0.037 +- 0.020 keV.
The third error quoted is an estimate of the model dependence of the result
due to assumptions on the interference effects in the cross section of the
single-photon e^{+}e^{-} annihilation to hadrons explicitly considered in this
work.
Implicitly, the same assumptions were employed to obtain the charmonium
leptonic width and the absolute branching fractions in many experiments.
Using the result presented and the world average values of the electron and
hadron branching fractions, one obtains the electron partial width and the
total width of the \psi(2S):
\Gamma_{ee} =2.282 +- 0.015 +- 0.038 +- 0.021 keV,
\Gamma = 296 +- 2 +- 8 +- 3 keV.
These results are consistent with and more than two times more precise than
any of the previous experiments
Cartan's spiral staircase in physics and, in particular, in the gauge theory of dislocations
In 1922, Cartan introduced in differential geometry, besides the Riemannian
curvature, the new concept of torsion. He visualized a homogeneous and
isotropic distribution of torsion in three dimensions (3d) by the "helical
staircase", which he constructed by starting from a 3d Euclidean space and by
defining a new connection via helical motions. We describe this geometric
procedure in detail and define the corresponding connection and the torsion.
The interdisciplinary nature of this subject is already evident from Cartan's
discussion, since he argued - but never proved - that the helical staircase
should correspond to a continuum with constant pressure and constant internal
torque. We discuss where in physics the helical staircase is realized: (i) In
the continuum mechanics of Cosserat media, (ii) in (fairly speculative) 3d
theories of gravity, namely a) in 3d Einstein-Cartan gravity - this is Cartan's
case of constant pressure and constant intrinsic torque - and b) in 3d Poincare
gauge theory with the Mielke-Baekler Lagrangian, and, eventually, (iii) in the
gauge field theory of dislocations of Lazar et al., as we prove for the first
time by arranging a suitable distribution of screw dislocations. Our main
emphasis is on the discussion of dislocation field theory.Comment: 31 pages, 8 figure
- …