387 research outputs found
Sparling two-forms, the conformal factor and the gravitational energy density of the teleparallel equivalent of general relativity
It has been shown recently that within the framework of the teleparallel
equivalent of general relativity (TEGR) it is possible to define the energy
density of the gravitational field. The TEGR amounts to an alternative
formulation of Einstein's general relativity, not to an alternative gravity
theory. The localizability of the gravitational energy has been investigated in
a number of space-times with distinct topologies, and the outcome of these
analises agree with previously known results regarding the exact expression of
the gravitational energy, and/or with the specific properties of the space-time
manifold. In this article we establish a relationship between the expression
for the gravitational energy density of the TEGR and the Sparling two-forms,
which are known to be closely connected with the gravitational energy. We also
show that our expression of energy yields the correct value of gravitational
mass contained in the conformal factor of the metric field.Comment: 12 pages, Latex file, no figures, to be published in Gen. Rel. Gra
On reference frames in spacetime and gravitational energy in freely falling frames
We consider the interpretation of tetrad fields as reference frames in
spacetime. Reference frames may be characterized by an antisymmetric
acceleration tensor, whose components are identified as the inertial
accelerations of the frame (the translational acceleration and the frequency of
rotation of the frame). This tensor is closely related to
gravitoelectromagnetic field quantities. We construct the set of tetrad fields
adapted to observers that are in free fall in the Schwarzschild spacetime, and
show that the gravitational energy-momentum constructed out of this set of
tetrad fields, in the framework of the teleparallel equivalent of general
relatrivity, vanishes. This result is in agreement with the principle of
equivalence, and may be taken as a condition for a viable definition of
gravitational energy.Comment: 19 pages, no figures, accepted by Classical and Quantum Gravit
Graviton resonances on two-field thick branes
This work presents new results about the graviton massive spectrum in
two-field thick branes. Analyzing the massive spectra with a relative
probability method we have firstly showed the presence of resonance structures
and obtained a connection between the thickness of the defect and the lifetimes
of such resonances. We obtain another interesting results considering the
degenerate Bloch brane solutions. In these thick brane models, we have the
emergence of a splitting effect controlled by a degeneracy parameter. When the
degeneracy constant tends to a critical value, we have found massive resonances
to the gravitational field indicating the existence of modes highly coupled to
the brane. We also discussed the influence of the brane splitting effect over
the resonance lifetimes.Comment: 15 pages, 8 figure
Gravity localization on hybrid branes
This work deals with gravity localization on codimension-1 brane worlds
engendered by compacton-like kinks, the so-called hybrid branes. In such
scenarios, the thin brane behaviour is manifested when the extra dimension is
outside the compact domain, where the energy density is non-trivial, instead of
asymptotically as in the usual thick brane models. The zero mode is trapped in
the brane, as required. The massive modes, although are not localized in the
brane, have important phenomenological implications such as corrections to the
Newton's law. We study such corrections in the usual thick domain wall and in
the hybrid brane scenarios. By means of suitable numerical methods, we attain
the mass spectrum for the graviton and the corresponding wavefunctions. The
spectra possess the usual linearly increasing behaviour from the Kaluza-Klein
theories. Further, we show that the 4D gravitational force is slightly
increased at short distances. The first eigenstate contributes highly for the
correction to the Newton's law. The subsequent normalized solutions have
diminishing contributions. Moreover, we find out that the phenomenology of the
hybrid brane is not different from the usual thick domain wall. The use of
numerical techniques for solving the equations of the massive modes is useful
for matching possible phenomenological measurements in the gravitational law as
a probe to warped extra dimensions.Comment: 15 pages, 11 figure
- …