28 research outputs found
Recommended from our members
High-contrast observations of brown dwarf companion HR 2562 B with the vector Apodizing Phase Plate coronagraph
InstrumentationStars and planetary system
On-sky Performance Analysis of the Vector Apodizing Phase Plate Coronagraph on MagAO/Clio2
Stars and planetary systemsInstrumentatio
Recommended from our members
Improved companion mass limits for Sirius A with thermal infrared coronagraphy using a vector-apodizing phase plate and time-domain starlight-subtraction techniques
Stars and planetary system
Recommended from our members
Spatial linear dark field control and holographic modal wavefront sensing with a vAPP coronagraph on MagAO-X
The Magellan Extreme Adaptive Optics (MagAO-X) Instrument is an extreme AO system coming online at the end of 2019 that will be operating within the visible and near-IR. With state-of-the-art wavefront sensing and coronagraphy, MagAO-X will be optimized for high-contrast direct exoplanet imaging at challenging visible wavelengths, particularly Hα. To enable high-contrast imaging, the instrument hosts a vector apodizing phase plate (vAPP) coronagraph. The vAPP creates a static region of high contrast next to the star that is referred to as a dark hole; on MagAO-X, the expected dark hole raw contrast is ∼4 × 10 − 6. The ability to maintain this contrast during observations, however, is limited by the presence of non-common path aberrations (NCPA) and the resulting quasi-static speckles that remain unsensed and uncorrected by the primary AO system. These quasi-static speckles within the dark hole degrade the high contrast achieved by the vAPP and dominate the light from an exoplanet. The aim of our efforts here is to demonstrate two focal plane wavefront sensing (FPWFS) techniques for sensing NCPA and suppressing quasi-static speckles in the final focal plane. To sense NCPA to which the primary AO system is blind, the science image is used as a secondary wavefront sensor. With the vAPP, a static high-contrast dark hole is created on one side of the PSF, leaving the opposite side of the PSF unocculted. In this unobscured region, referred to as the bright field, the relationship between modulations in intensity and low-amplitude pupil plane phase aberrations can be approximated as linear. The bright field can therefore be used as a linear wavefront sensor to detect small NCPA and suppress quasi-static speckles. This technique, known as spatial linear dark field control (LDFC), can monitor the bright field for aberrations that will degrade the high-contrast dark hole. A second form of FPWFS, known as holographic modal wavefront sensing (hMWFS), is also employed with the vAPP. This technique uses hologram-generated PSFs in the science image to monitor the presence of low-order aberrations. With LDFC and the hMWFS, high contrast across the dark hole can be maintained over long observations, thereby allowing planet light to remain visible above the stellar noise over the course of observations on MagAO-X. Here, we present simulations and laboratory demonstrations of both spatial LDFC and the hMWFS with a vAPP coronagraph at the University of Arizona Extreme Wavefront Control Laboratory. We show both in simulation and in the lab that the hMWFS can be used to sense low-order aberrations and reduce the wavefront error (WFE) by a factor of 3 − 4 × . We also show in simulation that, in the presence of a temporally evolving pupil plane phase aberration with 27-nm root-mean-square (RMS) WFE, LDFC can reduce the WFE to 18-nm RMS, resulting in factor of 6 to 10 gain in contrast that is kept stable over time. This performance is also verified in the lab, showing that LDFC is capable of returning the dark hole to the average contrast expected under ideal lab conditions. These results demonstrate the power of the hMWFS and spatial LDFC to improve MagAO-X’s high-contrast imaging capabilities for direct exoplanet imaging.Instrumentatio
Breast cancer metastasis to gynaecological organs: a clinico-pathological and molecular profiling study
Breast cancer metastasis to gynaecological organs is an understudied pattern of tumour spread. We explored clinico-pathological and molecular features of these metastases to better understand whether this pattern of dissemination is organotropic or a consequence of wider metastatic dissemination. Primary and metastatic tumours from 54 breast cancer patients with gynaecological metastases were analysed using immunohistochemistry, DNA copy-number profiling, and targeted sequencing of 386 cancer-related genes. The median age of primary tumour diagnosis amongst patients with gynaecological metastases was significantly younger compared to a general breast cancer population (46.5 versus 60 years; p < 0.0001). Median age at metastatic diagnosis was 54.4, time to progression was 4.8 years (range 0-20 years), and survival following a diagnosis of metastasis was 1.95 years (range 0-18 years). Patients had an average of five involved sites (most frequently ovary, fallopian tube, omentum/peritoneum), with fewer instances of spread to the lungs, liver, or brain. Invasive lobular histology and luminal A-like phenotype were over-represented in this group (42.8 and 87.5%, respectively) and most patients had involved axillary lymph nodes (p < 0.001). Primary tumours frequently co-expressed oestrogen receptor cofactors (GATA3, FOXA1) and harboured amplifications at 8p12, 8q24, and 11q13. In terms of phenotype conversion, oestrogen receptor status was generally maintained in metastases, FOXA1 increased, and expression of progesterone receptor, androgen receptor, and GATA3 decreased. ESR1 and novel AR mutations were identified. Metastasis to gynaecological organs is a complication frequently affecting young women with invasive lobular carcinoma and luminal A-like breast cancer, and hence may be driven by sustained hormonal signalling. Molecular analyses reveal a spectrum of factors that could contribute to de novo or acquired resistance to therapy and disease progression.Jamie R Kutasovic, Amy E McCart Reed, Renique Males, Sarah Sim, Jodi M Saunus ... Liana Dedina ... et al
Recommended from our members
Integrated coronagraphy and wavefront sensing with the PIAACMC
Uncorrected wavefront errors create speckle noise in high-contrast observations at small inner-working angles. These speckles can be sensed and controlled by using coronagraph integrated wavefront sensors. Here, we will present how the Phase Induced Amplitude Apodized Complex Mask Corongraph (PIAACMC) can be integrated with both a Self-Coherent Camera (SCC) for focal plane wavefront sensing and an extremely sensitivity high-order pupil plane Zernike wavefront sensor (ZWFS). Non-common path aberrations can be completely erased by integrating both sensors into the PIAACMC, which is of extremely high importance in high-contrast imaging. © 2023 SPIE.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Information-theoretical Limits of Recursive Estimation and Closed-loop Control in High-contrast Imaging
A lower bound on unbiased estimates of wave front errors (WFEs) is presented for the linear regime of small perturbation and active control of a high-contrast region (dark hole). Analytical approximations and algorithms for computing the closed-loop covariance of the WFE modes are provided for discrete- and continuous-time linear WFE dynamics. Our analysis applies to both image-plane and non-common-path wave front sensing (WFS) with Poisson-distributed measurements and noise sources (i.e., photon-counting mode). Under this assumption, we show that recursive estimation benefits from infinitesimally short exposure times, is more accurate than batch estimation and, for high-order WFE drift dynamical processes, scales better than batch estimation with amplitude and star brightness. These newly derived contrast scaling laws are a generalization of previously known theoretical and numerical results for turbulence-driven adaptive optics. For space-based coronagraphs, we propose a scheme for combining models of WFE drift, low-order non-common-path WFS (LOWFS) and high-order image-plane WFS (HOWFS) into closed-loop contrast estimates. We also analyze the impact of residual low-order WFE, sensor noise, and other sources incoherent with the star, on closed-loop dark hole maintenance and the resulting contrast. As an application example, our model suggests that the Roman Space Telescope might operate in a regime that is dominated by incoherent sources rather than WFE drift, where the WFE drift can be actively rejected throughout the observations with residuals significantly dimmer than the incoherent sources. The models proposed in this paper make possible the assessment of the closed-loop contrast of coronagraphs with combined LOWFS and HOWFS capabilities, and thus help estimate WFE stability requirements of future instruments. © 2021. The American Astronomical Society. All rights reserved.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Companion mass limits for 17 binary systems obtained with binary differential imaging and MagAO/Clio
Improving direct detection capability close to the star through improved star subtraction and post-processing techniques is vital for discovering new low-mass companions and characterizing known ones at longer wavelengths. We present results of 17 binary star systems observed with the Magellan adaptive optics system (MagAO) and the Clio infrared camera on the Magellan Clay Telescope using binary differential imaging (BDI). BDI is an application of reference differential imaging (RDI) and angular differential imaging (ADI) applied to wide binary star systems (2 arcsec <Δρ < 10 arcsec) within the isoplanatic patch in the infrared. Each star serves as the point spread function (PSF) reference for the other, and we performed PSF estimation and subtraction using principal component analysis. We report contrast and mass limits for the 35 stars in our initial survey using BDI with MagAO/Clio in L′ and 3.95 μm bands. Our achieved contrasts varied between systems, and spanned a range of contrasts from 3.0 to 7.5 magnitudes and a range of separations from 0.2 to 2 arcsec. Stars in our survey span a range of masses, and our achieved contrasts correspond to late-type M-dwarf masses down to ∼10 MJup. We also report detection of a candidate companion signal at 0.2 arcsec (18 au) around HIP 67506 A (SpT G5V, mass ∼1.2 M⊙), which we estimate to be ∼ 60-90, MJup. We found that the effectiveness of BDI is highest for approximately equal brightness binaries in high-Strehl conditions. © 2022 The Author(s).Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Experimental Trials With The Optical Differentiation Wavefront Sensor For Extended Objects
Commonly used wavefront sensors - the Shack Hartmann wavefront sensor and the pyramid wavefront sensor, for example - have large dynamic range or high sensitivity, trading one regime for the other. A new type of wavefront sensor is being developed and is currently undergoing testing at the University of Arizona's Center for Astronomical Adaptive Optics. This sensor builds on linear optical differentiation t heory b y u sing linear, spatially varying half-wave plates in an intermediate focal plane. These filters, a long w ith p olarizing beam splitters, divide the beam into four pupil images, similar to those produced by the pyramid wavefront sensor. The wavefront is then reconstructed from the local wavefront slope information contained in these images. The ODWFS is ideally suited for wavefront sensing on extended objects because of its large dynamic range and because it operates in a pupil plane which allows for on chip resampling even for arbitrarily shaped sources. We have assembled the ODWFS on a testbed using a 32 x 32 square 1000 actuator deformable mirror to introduce aberration into a simulated telescope beam. We are currently testing the system's spatial frequency response and are comparing the resulting data to numerical simulations. This paper presents the results of these initial experiments. © 2022 SPIE.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]