50 research outputs found
The Quebrada de Humahuaca area and the Eastern Border of the Eastern Cordillera, Jujuy province
The southern half of the Eastern Cordillera is divided into three areas, limited by important tectonic fronts: the Eastern Zone, the Maximum Imbrication Zone and the Western Zone (Figure 6). In all of them there appear basement rocks, Cambrian–Ordovician, and Cretaceous–Tertiary deposits.Fil: Moya, Maria Cristina. Universidad Nacional de Salta. Consejo de Investigación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Monteros, Julio A.. Universidad Nacional de Salta. Consejo de Investigación; ArgentinaFil: Malanca, Susana. Universidad Nacional de Salta. Consejo de Investigación; Argentin
The Mojotoro Range, eastern cordillera, Salta province
The Mojotoro Range (MR) is located at the SE end of the Argentine Eastern Cordillera, to the east of Salta City (Figure 7a,b). From a structural point of view, the MR is a complex anticlinorioum of N–S strike that closes to the north, at the latitude of San Antonio (Jujuy Province), and is cut to the south by the San Agustín fault (Salta Province) (Figure 7b). The anticline core is a clastic basement (late Proterozoic–Early Cambrian) with low grade metamorphism. This basement unconformably underlies (Tilcara unconformity) deposits of the Mesón Group and the Santa Victoria Group. The Salta Group (Cretaceous–Eocene) crops out in the southern end of the Mojotoro Range and lies over different Ordovician units. Deposits of the Oran Group (Tertiary, Neogene) are distributed near the eastern flank of the MR, and the contact of those deposits with the basement or cover rocks is always tectonic (Figures 7b). The Mojotoro Range is a typical structure of the Andean foreland, which is characterized by folding and overthrusts of eastern dip. The displacement took place by means of important reverse faults of N–S direction, affecting the basement and Palaeozoic cover on the eastern flank. The main thrust is located in the middle part of the MR section, where the eastern flank is inverted. There only appear post–Tremadocian deposits because of the faulting that suppressed the Mesón Group and Tremadocian units of the Santa Victoria Group. However, these deposits are well–represented on the western flank of Mojotoro Range. Another fault system of NO–SE direction transversally cuts the Mojotoro Range (Figure 7b), interrupting the lateral continuity of Palaeozoic rocks. They are left–handed faults, probably linked with the dynamics of El Toro Lineament. Two of these faults –Quebrada Honda and San Agustin (Figure 7b)– present evidences of pre–Cretaceous activity: a) It is supposed that the Quebrada Honda fault controlled the southern margin of the Cambrian basin, because deposits of the Mesón Group (only 17 m thick) lend out to the north of this fracture, and do not crop out to the south of it. b) It is verified that the San Agustín fault constitutes an erosive margin of the Ordovician basin (Moya, 1988a), which was worked previously to the deposits of Salta Group. Thick Ordovician deposits of the Mojotoro Range are abruptly interrupted against this fracture; toward the south, in the summits of Castillejo, the Salta Group covers the basement as well as few Ordovician tectonic sheetsFil: Moya, Maria Cristina. Universidad Nacional de Salta. Consejo de Investigacion; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Monteros, Julio A.. Universidad Nacional de Salta. Consejo de Investigacion; ArgentinaFil: Malanca, Susana. Universidad Nacional de Salta. Consejo de Investigacion; ArgentinaFil: Albanesi, Guillermo Luis. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Museo de Paleontología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentin
Atmospheric Degradation of Acetic Anhydride. Kinetic Study and Reaction Mechanism
This is a preprint article, it offers immediate access but has not been peer reviewed.Fil: Vila, Jesús A. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones en Ciencias de la Tierra, Argentina.Fil: Vila, Jesús. A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica, Argentina.Fil: Rimondino, Guido N. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica, Argentina.Fil: Rimondino, Guido N. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina.Fil: Peláez, Walter J. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica, Argentina.Fil: Peláez, Walter J. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina.Fil: Kalinowski, Mateo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica, Argentina.Fil: Malanca, Fabio E. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica, Argentina.Fil: Malanca, Fabio E. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina_The rate coefficient for the gas phase reaction of acetic anhydride with chlorine atoms has been experimentally determined at 298 K using a relative method, employing ethyl acetate and acetone as reference compounds. From the experimental value, kAc2O+Cl = (1.6 ± 0.4) × 10-12 cm3 molec−1 s−1, a factor for the -C(O)OC(O) group is presented for the Structure−Activity Relationship method. On the other hand, an estimated value for the rate coefficient for the reaction of acetic anhydride with hydroxyl radical (kAc2O+OH = 1.9 x 10-13 cm3 molec−1 s−1) was performed using a correlation between kinetic data for the reactions of other carbo-oxygenated compounds with both, OH radicals and Cl atoms. The photo-oxidation mechanism of acetic anhydride initiated by chlorine atoms was also studied at 298 K and atmospheric pressure and CO, CO2, CH3C(O)OH, CH3C(O)OC(O)C(O)H and C4O4H4 were identified as products by infrared spectroscopy. In addition, the relative energies of the primary reaction paths for CH3C(O)OC(O)CH2O· radical were determined using computational methods, which confirmed the experimental data and allowed postulating the mechanism of atmospheric degradation. Finally, the environmental implications of the acetic anhydride emissions were calculated, showing an atmospheric lifetime between 31 and 220 days for the reaction with atmospheric radicals, while its wet deposition lifetime is 1.5 year.info:eu-repo/semantics/publishedVersionFil: Vila, Jesús A. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones en Ciencias de la Tierra, Argentina.Fil: Vila, Jesús. A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica, Argentina.Fil: Rimondino, Guido N. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica, Argentina.Fil: Rimondino, Guido N. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina.Fil: Peláez, Walter J. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica, Argentina.Fil: Peláez, Walter J. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina.Fil: Kalinowski, Mateo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica, Argentina.Fil: Malanca, Fabio E. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica, Argentina.Fil: Malanca, Fabio E. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina
Atmospheric Photo-Oxidation of Acetic Anhydride: Kinetic Study and Reaction Mechanism. Products Distribution and Fate of Ch3c(O)Oc(O)Ch2o·Radical
This is a preprint article, it offers immediate access but has not been peer reviewed.Fil: Vila, Jesús. A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica, Argentina.Fil: Vila, Jesús A. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones en Ciencias de la Tierra, Argentina.Fil: Rimondino, Guido N. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica, Argentina.Fil: Rimondino, Guido N. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina.Fil: Peláez, Walter J. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica, Argentina.Fil: Peláez, Walter J. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina.Fil: Kalinowski, Mateo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica, Argentina.Fil: Malanca, Fabio E. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica, Argentina.Fil: Malanca, Fabio E. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina.The rate coefficient for the gas-phase reaction of acetic anhydride (Ac2O) with chlorine atoms at 298 K and atmospheric pressure was experimentally determined (kAc2O+Cl = (1.3 ± 0.4) × 10-12 cm3 molec−1 s−1), while the rate coefficient for the reaction with the hydroxyl radical was estimated (kAc2O+OH = 1.9 x 10-13 cm3 molec−1 s−1). For the Structure-Activity Relationship method, a value of 0.02 was determined for the -C(O)OC(O) group. The mechanism of photo-oxidation of acetic anhydride initiated by chlorine atoms was determined and CO, CO2, CH3C(O)OH (32 %), CH3C(O)OC(O)C(O)H, and 3-hydroxy-1,4-dioxane-2,6-dione (20 %) were identified as products by infrared spectroscopy. Here we determined for the first time the relative energies of the primary reaction pathways for the CH3C(O)OC(O)CH2O· radical using computational methods, which confirmed our experimental data. Finally, the environmental implications of acetic anhydride emissions were calculated, showing an atmospheric lifetime between 31 and 220 days for the reaction with atmospheric radicals, while its wet deposition lifetime is 1.5 years.info:eu-repo/semantics/publishedVersionFil: Vila, Jesús. A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica, Argentina.Fil: Vila, Jesús A. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones en Ciencias de la Tierra, Argentina.Fil: Rimondino, Guido N. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica, Argentina.Fil: Rimondino, Guido N. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina.Fil: Peláez, Walter J. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica, Argentina.Fil: Peláez, Walter J. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina.Fil: Kalinowski, Mateo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica, Argentina.Fil: Malanca, Fabio E. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Fisicoquímica, Argentina.Fil: Malanca, Fabio E. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina
Late Cambrian – Tremadocian faunas and events from Angosto del Moreno Section, Eastern Cordillera, Argentina
The Santa Victoria Group (SVG, late Upper Cambrian – Caradocian) comprises pre–Ashgillian Ordovician deposits of the Argentinean Eastern Cordillera. The most significant section of the SVG in the western flank of the Eastern Cordillera is located in the Angosto del Moreno area (Figure 1a, b). At this locality, the SVG unconformably overlies the Mesón Group (Cambrian s.l.), and unconformably underlies Cretaceous rocks (Yacoraite Formation). Upper Cambrian to lower Lower Ordovician units are separated from upper Lower to Middle Ordovician units (Parcha and Sepulturas formations) by the Tumbaya unconformity (Figure 2). The Angosto del Moreno Section of the SVG is exceptional in terms of the quality of exposures, continuity of deposits, richness of fossils, and accessibility. Diverse aspects concerning the Ordovician geology of this study area have been discussed by Moya et al. (1994, 1998), Moya and Albanesi (2000), Moya and Monteros (2000), Malanca and Brandán (2000), and Gómez Martínez et al. (2002). Previous data and recent paleontological collections enable a preliminary biostratigraphic scheme (Figure 2) for the Upper Cambrian to Tremadocian units of the SVG. A synthesis of the sequence stratigraphy and depositional environments of these units is given by Buatois et al. (this volume).Fil: Moya, Maria Cristina. Universidad Nacional de Salta. Consejo de Investigacion; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Malanca, Susana. Universidad Nacional de Salta. Consejo de Investigacion; ArgentinaFil: Monteros, Julio A.. Universidad Nacional de Salta. Consejo de Investigacion; ArgentinaFil: Albanesi, Guillermo Luis. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Museo de Paleontología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Ortega, Gladys del Carmen. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Museo de Paleontología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Buatois, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Correlación Geológica. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Departamento de Geología. Cátedra Geología Estructural. Instituto Superior de Correlación Geológica; Argentin
The Angosto del Moreno area, Eastern Cordillera, Jujuy province
Ordovician and Silurian rocks exposed in the western belt of the Eastern Cordillera of Jujuy Province will be discussed during the journey through the provincial road 16, which connects the Purmamarca Village with the Angosto del Moreno locality. Following stops refer to diverse geological aspects of the region.Fil: Moya, Maria Cristina. Universidad Nacional de Salta. Consejo de Investigacion; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Malanca, Susana. Universidad Nacional de Salta. Consejo de Investigacion; ArgentinaFil: Monteros, Julio A.. Universidad Nacional de Salta. Consejo de Investigacion; ArgentinaFil: Albanesi, Guillermo Luis. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Museo de Paleontología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Ortega, Gladys del Carmen. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Museo de Paleontología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Buatois, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Correlación Geológica. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Departamento de Geología. Cátedra Geología Estructural. Instituto Superior de Correlación Geológica; Argentin
Thermal Decomposition of CxF2 x+1C(O)OONO2(x = 2, 3, 4)
The atmospheric degradation of molecules containing the CxF2x+1C(O) moiety, such as perfluoroaldehydes CxF2x+1C(O)H (x = 2-4) formed in the degradation of telomeric alcohols, could lead to the formation of perfluoroacyl peroxynitrates CxF2x+1C(O)OONO2. The thermal decomposition of the CxF2x+1C(O)OONO2 family (x = 2, 3, 4) was investigated by infrared spectroscopy and computational models. Each peroxynitrate synthesis was performed through the photolysis of gas mixtures of the corresponding perfluoroaldehyde, chlorine, nitrogen dioxide, and oxygen. Kinetic analysis for the thermal decomposition of peroxynitrates were performed in the range from 297.0 to 313.7 K at a total pressure of 1000 mbar and the activation energy was experimentally determined. Experimental data were complemented with theoretical data using the Gaussian09 Program Suite. The structures of peroxynitrates were optimized using DFT methods. The activation energies were calculated and investigated taking into account the stereoelectronic effects and using theoretical calculations as well as NBO analysis. The influence of anomeric interaction over the O-N bond was evaluated for all the molecules. Analysis of the results shows that CxF2x+1C(O)OONO2 stability is independent of CxF2x+1 chain length, in contrast to the behavior for perfluoroalkyl peroxynitrates (CxF2x+1OONO2).Fil: Vila, Jesús Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Iriarte, Ana Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Chiappero, Malisa Susana. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Química; ArgentinaFil: Malanca, Fabio Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin
Carboxyhaemoglobin levels and their determinants in older British men
Background: Although there has been concern about the levels of carbon monoxide exposure, particularly among older people, little is known about COHb levels and their determinants in the general population. We examined these issues in a study of older British men.Methods: Cross-sectional study of 4252 men aged 60-79 years selected from one socially representative general practice in each of 24 British towns and who attended for examination between 1998 and 2000. Blood samples were measured for COHb and information on social, household and individual factors assessed by questionnaire. Analyses were based on 3603 men measured in or close to (< 10 miles) their place of residence.Results: The COHb distribution was positively skewed. Geometric mean COHb level was 0.46% and the median 0.50%; 9.2% of men had a COHb level of 2.5% or more and 0.1% of subjects had a level of 7.5% or more. Factors which were independently related to mean COHb level included season (highest in autumn and winter), region (highest in Northern England), gas cooking (slight increase) and central heating (slight decrease) and active smoking, the strongest determinant. Mean COHb levels were more than ten times greater in men smoking more than 20 cigarettes a day (3.29%) compared with non-smokers (0.32%); almost all subjects with COHb levels of 2.5% and above were smokers (93%). Pipe and cigar smoking was associated with more modest increases in COHb level. Passive cigarette smoking exposure had no independent association with COHb after adjustment for other factors. Active smoking accounted for 41% of variance in COHb level and all factors together for 47%.Conclusion: An appreciable proportion of men have COHb levels of 2.5% or more at which symptomatic effects may occur, though very high levels are uncommon. The results confirm that smoking (particularly cigarette smoking) is the dominant influence on COHb levels