8 research outputs found

    The

    No full text
    The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma) irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f) prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f) prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards

    The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    No full text
    The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma) irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f) prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f) prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards

    Calibration of CFUL01 fission chambers in the standard neutron fields of the BR1 reactor at SCK CEN

    No full text
    Recent subcritical VENUS-F experiments showed that fission chambers with a threshold deposit like U-238 can essentially improve the on-line sub-criticality measurments with the beam interruption method, which is currently supposed to be the main method for the ADS MYRRHA. To suppress the uncertainty caused by fissions in the U-235 impurities, the fraction of U-235 in the U deposit should be accurately known. Three PHOTONIS CFUL01 type fission chambers with U-238 deposit were purchased for sub-critical experiments in the VENUS-F reactor. To verify the purity of their deposits, the effective U-235 masses were measured in the empty cavity of the BR1 reactor with a well-known thermal neutron spectrum. It turned out that the measured effective U-235 mass in two fission chambers is lower than the declared mass (as it should be), but this is not the case for the third fission chamber. Then, the effective U-238 mass in these FCs was measured in the well-known fast spectrum of the MARK-III convertor in the BR1 reactor. Finally, the isotopic composition was obtained and it was found that the purity of two CFUL01 FCs is in agreement with the values declared in the certificates but it is not the case for the third fission chamber. As the length of the deposit is bigger than the length of the MARK-III convertor, necessary corrections were calculated with MCNP. The developed procedure using the BR1 standard irradiation fields can be applied for calibration and impurity determination of large fission chambers

    European Lead Fast Reactor (ELSY and LEADER projects)

    No full text
    The European Lead Fast Reactor is being developed starting from September 2006, in the frame of the ELSY project sponsored by the Sixth Framework Programme of EURATOM. The project, coordinated by Ansaldo Nucleare, involves a wide consortium of European organizations. The ELSY reference design is a 600 MWe pool-type reactor cooled by pure lead. The ELSY project demonstrates the possibility of designing a competitive and safe fast critical reactor using simple engineered technical features, whilst fully complying with the Generation IV goal of sustainability and minor actinide (MA) burning capability. Sustainability was a leading criterion for option selection for core design, focusing on the demonstration of the potential to be self sustaining in plutonium and to burn its own generated MAs. To this end, different core configurations have been studied and compared. Economics was a leading criterion for primary system design and plant layout. The use of a compact and simple primary circuit with the additional objective that all internal components be removable, are among the reactor features intended to assure competitive electric energy generation and long-term investment protection. Low capital cost and construction time are pursued through simplicity and compactness of the reactor building (reduced footprint and height). The reduced plant footprint is one of the benefits coming from the elimination of the Intermediate Cooling System, the low reactor building height is the result of the design approach which foresees the adoption of short-height components and two innovative DHR systems. Among the critical issues, the impact of the large mass of lead has been carefully analyzed; notwithstanding it has been demonstrated that the high density of lead can be mitigated by more compact solutions and improvement of the design of the Reactor Vessel support system, i.e. the adoption of seismic isolators for a full seismic-resistant design. Preliminary results of the reactor vessel and supports stress analysis indicate that an LFR larger than a medium-size plant (in the IAEA classification) is potentially feasible. Safety has been one of the major focus all over the ELSY development. In addition to the inherent safety advantages of lead coolant like high boiling point and no exothermic reactions with air or water, a high safety grade of the overall system has been reached. In fact overall primary system has been conceived in order to minimize pressure drops and, as a consequence, to allow decay heat removal by natural circulation. Moreover two redundant, diverse and passive operated DHR systems have been developed and adopted. The ELSY project was organised into 6 technical plus one coordination work packages. The paper presents the overall work performed so far in the different areas.JRC.F.4-Nuclear Reactor Integrity Assessment and Knowledge Managemen

    European Lead Fast Reactor - ELSY

    No full text
    The conceptual design of the European Lead Fast Reactor is being developed starting from September 2006, in the frame of the EU-FP6-ELSY project.The ELSY (European Lead-cooled System) reference design is a 600 MWe pool-type reactor cooled by pure lead. The ELSY project demonstrates the possibility of designing a competitive and safe fast critical reactor using simple engineered technical features, while fully complying with the Generation IV goal of sustainability and minor actinide (MA) burning capability. Sustainability was a leading criterion for option selection for core design, focusing on the demonstration of the potential to be self sustaining in plutonium and to burn its own generated MAs. To this end, different core configurations have been studied. Economics was a leading criterion for primary system design and plant layout. The use of a compact and simple primary circuit with the additional objective that all internal components be removable, are among the reactor features intended to assure competitive electric energy generation and long-term investment protection. Low capital cost and construction time are pursued through simplicity and compactness of the reactor building (reduced footprint and height). The reduced plant footprint is one of the benefits coming from the elimination of the Intermediate Cooling System, the low reactor building height is the result of the design approach which foresees the adoption of short-height components and two innovative Decay Heat Removal (DHR) systems. Among the critical issues, the impact of the large mass of lead has been carefully analyzed; it has been demonstrated that the high density of lead can be mitigated by compact solutions and adoption of seismic isolators. Safety has been one of the major focuses all over the ELSY development. In addition to the inherent safety advantages of lead coolant (high boiling point and no exothermic reactions with air or water) a high safety grade of the overall system has been reached. In fact the overall primary system has been conceived in order to minimize pressure drops and, as a consequence, to allow decay heat removal by natural circulation. Moreover two redundant, diverse and passive operated DHR systems have been developed and adopted. The paper presents the overall work performed so far.JRC.F.4-Safety of future nuclear reactor

    The 235

    No full text
    The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma) irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f) prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f) prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards

    ELSY - The European Lead Fast Reactor

    No full text
    The European Lead Fast Reactor is being developed starting from September 2006, in the frame of the ELSY (European Lead SYstem) project funded by the Sixth Framework Programme of EURATOM. The project, coordinated by Ansaldo Nucleare, involves a wide consortium of European organizations. The ELSY reference design is a 600 MWe pool-type reactor cooled by pure lead. The ELSY project demonstrates the possibility of designing a competitive and safe fast critical reactor using simple engineered technical features, whilst fully complying with the Generation IV goal of sustainability and minor actinide (MA) burning capability. The main objectives of the ELSY project are to show that: - the adopted innovative design and technology achieves the high safety standards, which would be required at the time of their deployment, - the fuel cycle can be closed, - the non-proliferation resistance is enhanced, - a high availability factor is reached, - the economic competitiveness target is reached, - the design is compliant with GIF goals Sustainability was a leading criterion for option selection for core design, focusing on the demonstration of the potential to be self sustaining in plutonium and to burn its own generated MAs. To this end, different core configurations have been studied and compared. Economics was a leading criterion for primary system design and plant layout. The use of a compact and simple primary circuit with the additional objective that all internal components be removable, are among the reactor features intended to assure competitive electric energy generation and long-term investment protection. Low capital cost and construction time are pursued through simplicity and compactness of the reactor building (reduced footprint and height). The reduced plant footprint is one of the benefits coming from the elimination of the Intermediate Cooling System, the low reactor building height is the result of the design approach which foresees the adoption of short-height components and two innovative passively operated DHR (Decay Heat Removal) systems. Among the critical issues, the impact of the large mass of lead has been carefully analyzed; notwithstanding it has been demonstrated that the high density of lead can be mitigated by more compact solutions and improvement of the design of the Reactor Vessel support system, i.e. the adoption of seismic isolators for a full seismic-resistant design. Preliminary results of the reactor vessel and supports stress analysis indicate that an LFR larger than a medium-size plant (in the IAEA classification) is potentially feasible. Safety has been one of the major focus all over the ELSY development. In addition to the inherent safety advantages of lead coolant like high boiling point and no exothermic reactions with air or water, a high safety grade of the overall system has been reached. In fact overall primary system has been conceived in order to minimize pressure drops and, as a consequence, to allow decay heat removal by natural circulation (note that this feature is essential for the unprotected loss of flow transient). Moreover two redundant, diverse and passive operated DHR systems have been developed and adopted. The ELSY primary system configuration is shown in Figure 1. The paper focuses on the main aspects of the proposed design for the European Lead Fast Reactor highlighting the innovation of this reactor concept, overall objectives as well as future developments. Safety features of the proposed Decay Heat Removal systems will be shortly presented.JRC.F.4-Nuclear Reactor Integrity Assessment and Knowledge Managemen
    corecore